Sample Publications

We have selected approximately five publications per investigator below.  Please visit individual websites for full profile information.
University of Brighton
  • Vogiatzaki, C. Crua, R. Morgan, M.R. Heikal, A study of the controlling parameters of fuel air mixture formation for ECN Spray A, Proceedings 28th European Conference on Liquid Atomisation and Spray Systems (ILASS) 2017
  • Tretola, K. Vogiatzaki, S. Navarro-Martinez: Detailed simulation of air-assisted spray atomization: effect of numerical scheme at intermediate Weber number, In Proceedings 28th European Conference on Liquid Atomisation and Spray Systems (ILASS) 2017
  • Straub, S. De, A. Kronenburg, K. Vogiatzaki, The effect of a minor dissipation time scale on predicted local extinction and re-ignition in the Sandia flame series (D-F), Combustion Theory and Modelling, http://dx.doi.org/10.1080/13647830.2016.1191677, 2016
  • Vogiatzaki, P. K. Koukouvinis, J. Carlton, Numerical investigation of different cavitation regimes with the use of Large Eddy Simulations, In Proceedings 27th European Conference on Liquid Atomisation and Spray Systems (ILASS) 2016
  • Aboukhedr, M. Gavaises, A. Georgoulas, M. Marengo, K. Vogiatzaki Numerical investigation of droplet spreading on porous and non-porous surfaces, In Proceedings 27th European Conference on Liquid Atomisation and Spray Systems (ILASS) 2016
  • Taamallah S., Vogiatzaki K., Ghoniem A.F., Alzahrani_ F.M., Mokheimer E., Habib M.A. Fuel Flexibility, Stability and Emissions in Premixed Hydrogen-Rich Combustion: Technology, Fundamentals, and Numerical Simulations, Applied energy, Vol.154, Pages 1020–1047 2015 doi:10.1016/j.apenergy.2015.04.044
  • M Aboukhedr, K Vogiatzaki, N. Mitroglou and M Gavaises, A numerical simulation of single and twophase flow in porous media: A pore-scale observation of effective microscopic forces. 6th BETA CAE International Conference, Greece, Vol. 6, May 2015, doi:10.13140/RG.2.1.5032.4643
Brunel University London
  • Shinjo, J. Xia, “Combustion characteristics of a single decane/ethanol emulsion droplet and a droplet group under puffing conditions”, PROCEEDINGS OF THE COMBUSTION INSTITUTE 36 (2017) 2513–2521.
  • Shinjo, J. Xia, L.C. Ganippa, A. Megaritis, “Puffing-enhanced fuel/air mixing of a single diesel/bioethanol emulsion droplet and a droplet group under convective heating”, JOURNAL OF FLUID MECHANICS 793 (2016) 444–476.
University of Cambridge
  • Giusti, E. Mastorakos, “Detailed chemistry LES/CMC simulation of a swirling ethanol spray flame approaching blow-off”, Proc. Combust. Inst., 36, 2652-2633, 2017
  • Zhang, E. Mastorakos, “Modelling local extinction in Sydney swirling non-premixed flames with LES/CMC”, Proc. Combust. Inst., 36, 1669-1676, 2017
  • Chen, S. Ruan, N. Swaminathan, “Large Eddy Simulation of flame edge evolution in a spark-ignited methane-air jet”, Proc. Combust. Inst., 36, 1645-1652, 2017.
  • Girish V. Nivarti and R. Stewart Cant, Aerodynamic Quenching and Burning Velocity of Turbulent Premixed Methane-Air Flames, Proceedings of the ASME Gas Turbine Conference and Exhibition, June 15-19, 2015, Montreal, Canada. Paper number GT2015-43416
  • Bilger, C., Aboukhedr, M., Vogiatzaki, K., & Cant, R. S. (2017). Evaluation of two-phase flow solvers using Level Set and Volume of Fluid methods. Journal of Computational Physics, 345, 665-686.
  • Lee, C. Y., Li, L. K. B., Juniper, M. P., & Cant, R. S. (2016). Nonlinear hydrodynamic and thermoacoustic oscillations of a bluff-body stabilised turbulent premixed flame. Combustion Theory and Modelling, 20(1), 131-153.
Cranfield University
  • Witwit W, Zhao Y, Jenkins K & Zhao Y (2017) Satellite image resolution enhancement using discrete wavelet transform and new edge-directed interpolation, Journal of Electronic Imaging, 26 (2, article number 023014).
  • Teschner TR, Könözsy L & Jenkins KW (2016) Progress in Particle-based Multiscale and Hybrid Methods for Flow Applications, Microfluidics and Nanofluidics, 20 (Article 68).
  • Witwit W, Zhao Y, Jenkins K & Zhao Y (2016) An Optimal Factor Analysis Approach to Improve the Wavelet-based Image Resolution Enhancement Techniques, Global Journal of Computer Science and Technology : F Graphics & Vision, 16 (3-F).
  • Jadhav S, He H & Jenkins K (2016) An Academic Review: Applications of Data Mining Techniques in Finance Industry, International Journal of Soft Computing and Artificial Intelligence, 4 (1) 79-95.
  • Gilliland T, Ranga Dinesh KKJ, Fairweather M, Falle SAEG, Jenkins KW & Savill AM (2012) External Intermittency Simulation in Turbulent Round Jets, Flow, Turbulence and Combustion, 89 (3) 385-406.
  • Dinesh KKJR, Jenkins KW, Savill AM & Kirkpatrick MP (2012) Mixing, intermittency and large eddy simulation of a turbulent round jet, Progress in Computational Fluid Dynamics, An International Journal, 12 (5) 342-352.
Durham University
  • Marner, F., Gaskell, P. H. & Scholle, M. (2017). A complex-valued first integral of Navier-Stokes equations: Unsteady Couette flow in a corrugated channel system. Journal of Mathematical Physics 58(4): 043102.
  • Shah, R. A., Gaskel, P. & Veremieiev, S. (2017). Free Surface Thin Film Flow of a Sisko’s Fluid over a Surface Topography. Journal of Applied Fluid Mechanics 10(1): 307-317.
  • Veremieiev, S., Thompson, H.M., Scholle, M., Lee, Y.C. & Gaskell, P.H. (2012). Electrified thin film flow at finite Reynolds number on planar substrates featuring topography. International Journal of Multiphase Flow 44: 48-69.
  • Scholle, M., Haas, A. & Gaskell, P.H. (2011). A first integral of Navier–Stokes equations and its applications. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 467(2125): 127-143.
  • Veremieiev, S., Thompson, H.M., Lee, Y.C. & Gaskell, P.H. (2010). Inertial thin film flow on planar surfaces featuring topography. Computers & Fluids 39(3): 431-450.
  • Scholle, M. Haas, A., Aksel1, N. Wilson, M.C.T. Thompson, H.M. & P. H. Gaskell (2008). Competing geometric and inertial effects on local flow structure in thick gravity-driven fluid films. Physics of Fluids 20(12): 123101.
University of Edinburgh
  • Kim, H., Shin, D. H., Mcallister, K., Seo, M., Lee, S., Kang, I., Park, B. H., Campbell, E. E. B. & Lee, S. W. , Accurate and Precise Determination of Mechanical Properties of Silicon Nitride Beam Nanoelectromechanical Devices, 3 Feb 2017 In : ACS Applied Materials & Interfaces.
  • Humphrey, L., Acharya, V., Shin, D-H. & Lieuwen, T., Modeling the Response of Turbulent Flames to Harmonic Forcing, 2017 In : Combustion Science and Technology. 189, 2, p. 187-212
  • Jomaas, G., Spread and burning behavior of continuous spill fires, 22 Mar 2017 In: Fire Safety Journal.
  • Hidalgo-Medina, J., Gerasimova, N., Hadden, R., Torero, J. L. & Welch, S., Methodology for Estimating Pyrolysis Rates of Charring Insulation Materials using Experimental Temperature Measurements, Dec 2016 In : Journal of Building Engineering. 8, p. 249-259 11 p.
  • Li, J., Paul, M. C., Younger, P. L., Watson, I., Hossain, M. & Welch, S., Prediction of high-temperature rapid combustion behaviour of woody biomass particles, 1 Feb 2016 In : Fuel. 165, p. 205-214 10 p.
  • Hidalgo, J. P., Welch, S. & Torero, J. L., Performance criteria for the fire safe use of thermal insulation in buildings, 15 Dec 2015 In : Construction and Building Materials. 100, p. 285 297 p.
Imperial College London
  • Sewerin, S. Rigopoulos, “An explicit adaptive grid approach for the numerical solution of the population balance equation”, Chemical Engineering Science, 2017.
  • Franchetti BM, Marincola FC, Navarro-Martinez S, Kempf AMet al., 2016, Large Eddy Simulation of a 100 kW(th) swirling oxy-coal furnace, FUEL, Vol: 181, Pages: 491-502, ISSN: 0016-2361
  • Pesmazoglou I, Kempf AM, Navarro-Martinez S, 2016, Stochastic modelling of particle aggregation, INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, Vol: 80, Pages: 118-130, ISSN: 0301-9322
  • Tian L., Lindstedt R.P., 2017, The impact of dilatation, scrambling, and pressure transport in turbulent premixed flames, Combustion Theory and Modelling, Pages: 1-34, ISSN: 1364-7830
  • Vogiatzaki K, Navarro-Martinez S, De S, Kronenburg Aet al., 2015, Mixing Modelling Framework Based on Multiple Mapping Conditioning for the Prediction of Turbulent Flame Extinction, FLOW TURBULENCE AND COMBUSTION, Vol: 95, Pages: 501-517, ISSN: 1386-6184
  • P. Jones, A.J. Marquis, D. Noh, A stochastic breakup model for Large Eddy Simulation of a turbulent two-phase reactive flow, Proceedings of the Combustion Institute, 36 (2017) 2559-2566.
  • Yu Xia, Aimee S Morgans, William P Jones. Jim Rogerson, Ghenadie Bulat, Xingsi Han. Predicting thermoacoustic instability in an industrial gas turbine combustor: combining a low-order network model with flame LES. Proceedings of ASME Turbo Expo 2017, Charlotte, NC, USA (June 2017);
University of Central Lancashire
  • W Liu, A triple level finite element method for large eddy simulations, Journal of Computational Physics, Vol. 228, 2009, pp 2690 – 2706
  • W Liu and G Makhviladze, An implicit finite element solution of thermal flows at low Mach number, Journal of Computational Physics, Vol. 227, 2008, pp 2743 – 2757
  • W Liu, M Ashworth and D Emerson, Pressure correction methods based on Krylov subspace conception for solving incompressible Navier-Stokes problems, International Journal for Numerical Methods in Fluids, Vol. 45, 2004, pp 1249 – 1268
  • W Liu, Modelling of swirling turbulent flows, IHS mitteilungen (Stuttgart University), Vol. 22, 2001 pp 1 – 122
University of Leeds
  • Bates L; Bradley D; Gorbatenko I; Tomlin AS (2017) Computation of methane/air ignition delay and excitation times, using comprehensive and reduced chemical mechanisms and their relevance in engine autoignition. Combustion and Flame, 185 , pp. 105-116.
  • Bradley D; Lawes M; Mumby R (2017) Burning velocity and Markstein length blending laws for methane/air and hydrogen/air blends. Fuel, 187 , pp. 268-275.
  • Bates L; Bradley D (2017) Deflagrative, auto-ignitive, and detonative propagation regimes in engines. Combustion and Flame, 175 , pp. 118-122.
  • Bradley D; Gaskell PH; Gu X; Palacios A (2016) Jet flame heights, lift-off distances, and mean flame surface density for extensive ranges of fuels and flow rates. Combustion and Flame, 164 , pp. 400-409.
  • Hu Z; Somers BLMT; Cracknell RF; Bradley D (2016) Investigation of the Livengood–Wu integral for modelling autoignition in a high-pressure bomb. Combustion Theory and Modelling, 20 (1), pp. 77-98.
  • Bagdanavicius A; Bowen PJ; Bradley D; Lawes M; Mansour MS (2015) Stretch rate effects and flame surface densities in premixed turbulent combustion up to 1.25 MPa. Combustion and Flame, 162 (11), pp. 4158-4166.
Queen Mary University of London
  • Fischer, X. Jiang, “A chemical kinetic modelling study of the combustion of CH 4 –CO –H 2 –CO 2 fuel mixtures”, Combustion and Flame, 167 (2016) 274–293
  • Fischer, X. Jiang, “Numerical optimisation for model evaluation in combustion kinetics”, Applied Energy, 156 (2015) 793–803
  • Fischer, X. Jiang, “An assessment of chemical kinetics for bio-syngas combustion”, Fuel, 137 (2014) 293–305
  • Fischer, X. Jiang, “An investigation of the chemical kinetics of biogas combustion”, Fuel, 150 (2015) 711–720
University College London
  • Qian Mao, Adri C.T. van Duin, K.H. Luo, “Investigation of methane oxidation by palladium-based catalyst via ReaxFF Molecular Dynamics simulation”, Proc. Combust. Inst., 36, 4339-4346, 2017.
Loughborough University
  • Fletcher, J and Malalasekera, W., “Development of a user-friendly, low-cost home energy monitoring and recording system,” Energy 111:2016, pp.32-46, http://dx.doi.org/10.1016/j.energy.2016.05.027.
  • Beavis N.J., Ibrahim, S.S and Malalasekera W., A Numerical Study of Intake Valve Jet Flapping in a GDI Engine, International Journal of Powertrains (IJPT), January 2017.
  • Beavis N.J., Ibrahim, S.S and Malalasekera W., “Numerical Simulations of a GDI Engine Flow Using LES and POD, SAE Technical Paper 2016-01-0598, 2016, doi:10.4271/2016-01-0598.
  • Pryde, J.R., Malalasekera, W. and Whalley, D.C, ” Comparison of Heatsinks used for the Thermal Management of LEDs”, Electronics Cooling, September 2016.
  • Matsushita Y , Malalasekera W, Yokoi S, Saito Y, Aoki H, Turbulent Combustion Simulation Based on Flamelet Model, Kinzoku, Materials Science & Technology 85(11):915-921 01 Apr 2016.
  • Beavis, N.J., Ibrahim, S.S., and Malalasekera, W., (2015) Characteristics of GDI Engine Flow Structures. In: Leipertz, A. (ed.) 12th International Congress, Engine Combustion Processes, Current Problems and Modern Technologies, 12-13 March 2015, Ludwigsburg, Germany. Erlangen, ESYTEC GmbH. pp. 385-396. Available from: https://dspace.lboro.ac.uk/2134/2016.
  • Abdel-Rahim M., Ibrahim, S.S and Malalasekera W. Bragin M., “Numerical Simulation of CNG, LPG & H2 Lean Premixed Deflagrating Flames”, The 25th ICDERS Conference, August 2015.
University of Manchester
  • Prosser. Resolution Estimates for Simple One Dimensional Flames. To appear, Combustion Theory and Modelling. doi:10.1080/13647830.2017.1324641. IF 2.230
  • Ahmed, R. Prosser. A posteriori assessment of algebraic scalar dissipation models for RANS simulation of premixed turbulent combustion Flow turbulence and combustion. doi: 10.1007/s10494-017-9824-z. IF 1.519
  • Ahmed, R. Prosser Modelling Flame turbulence interaction in RANS simulation of premixed turbulent combustion. Combustion Theory & Modelling, 20, 34-57 (2015). doi:10.1080/13647830.2015.1115130. IF 2.230
  • Prosser. On the Finite Differences Used in Reacting Flow Simulations. Commun. Comput. Phys.18, 558-576 (2015) doi: 10.4208/cicp.260614.041214a. IF 2.077
Newcastle University
  • Chakraborty, I. Konstantinou, A. Lipatnikov, “Effects of Lewis number on vorticity and enstrophy transport in turbulent premixed flames”, Phys. Fluids, 28,015109, 2016.
  • Wacks, N. Chakraborty, E. Mastorakos, “Statistical analysis of the effects of droplets on flame propagation: A Direct Numerical Simulation analysis” Flow Turb. Combust., 96, 573-607, 2016.
  • Sellmann, J. Lai, N. Chakraborty, A.M. Kempf, “Flame Surface Density based modelling of head-on quenching of turbulent premixed flames.” Proc. Combust. Inst., 36, 1817-1825, 2017.
  • Aspden AJ. A numerical study of diffusive effects in turbulent lean premixed hydrogen flames. Proceedings of the Combustion Institute 2017, 36(2), 1997-2004.
  • Shin D-H, Aspden AJ, Richardson E. Self-similar Properties of Decelerating Turbulent Jets. Journal of Fluid Mechanics 2017. In Press.
  • Aspden AJ, Day MS, Bell JB. Turbulence-chemistry interaction in lean premixed hydrogen combustion. Proceedings of the Combustion Institute 2015, 35(2), 1321-1329.
University of Southampton
  • S. Richardson, J. H. Chen, “Analysis of turbulent flame propagation in equivalence ratio-stratified flow”, Proc. Combust. Inst., 1729-1736, 2017.
  • Shin, R. D. Sandberg, E. S. Richardson, “Self-similarity of fluid residence time statistics in a turbulent round jet”, Journal of Fluid Mechanics, 2017 (Accepted).
  • Ranga Dinesh, K. K. J., Shalaby, H., Luo, K. H., van Oijen, J. A., & Thevenin, D. (2016). Effects of pressure on cellular flame structure of high hydrogen content lean premixed syngas spherical flames: a DNS study. International Journal of Hydrogen Energy, 41(46), 21516-21531. DOI: 10.1016/j.ijhydene.2016.09.181
  • Ranga Dinesh, K. K. J., Shalaby, H., Luo, K. H., van Oijen, J. A., & Thevenin, D. (2016). High hydrogen content syngas fuel burning in lean premixed spherical flames at elevated pressures: effects of preferential diffusion. International Journal of Hydrogen Energy, 41(40), 18231-18249. DOI: 10.1016/j.ijhydene.2016.07.086
  • Ranga Dinesh, K. K. J., van Oijen, J., Luo, K., & Jiang, X. (2015). Nitric oxide pollutant formation in high hydrogen content (HHC)syngas flames. International Journal of Hydrogen Energy, 40(39), 13621-13634. DOI: 10.1016/j.ijhydene.2015.08.068
  • Ranga Dinesh, K. K. J., Jiang, X., & Van Oijen, J. A. (2014). Hydrogen-enriched non-premixed jet flames: analysis of the flame surface, flame normal, flame index and Wobbe Index. International Journal of Hydrogen Energy, 39(12), 6753-6763. DOI: 10.1016/j.ijhydene.2014.01.208
University of Warwick
  • Wang, C.J., Wen, Jennifer X. 2016. Numerical simulation of flame acceleration and deflagration-to-detonation transition in hydrogen-air mixtures with concentration gradients. International Journal of Hydrogen Energy, 42(11): 7557-7663 (2016).
  • J. Wang, J.X. Wen, Z.B. Chen, S. Dembele (2014) Predicting radiative characteristics of hydrogen and hydrogen/methane jet fires using FireFOAM, International Journal of Hydrogen Energy, 39(35): 20560-20569.
  • Saldi, Z. S., Wen, Jennifer X. Modeling thermal response of polymer composite hydrogen cylinders subjected to external fires. International Journal of Hydrogen Energy, 42(11): 7513-7520 ( 2 0 1 6 ) .
  • Zhibin Chen, Jennifer Wen, Baopeng Xu, Siaka Dembele, Large eddy simulation of a medium-scale methanol pool fire using the extended eddy dissipation concept, International Journal of Heat and Mass Transfer, Volume 70, March 2014, Pages 389-408.
  • Changjian Wang, Jennifer X Wen and Zhibin Chen, Simulation of Large-Scale LNG Pool Fires Using FireFOAM, Combustion Science and Technology, 2014, 186(10-11), pp. 1632-1649.