Imperial College London

Combining LES with a detailed population balance model to predict soot formation in a turbulent non-premixed jet flame

Fabian Sewerin Stelios Rigopoulos

Division of Thermofluids

September 16, 2016

Outline

Introduction

LES-PBE-PDF framework

An explicit adaptive grid discretization scheme

Soot formation in a turbulent diffusion flame

Conclusions

References

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Introduction

Our objective is to model turbulent reacting flows with particle formation.

(a) A sooting jet flame [2].

(c) BaSO₄ particles [1].

(b) Cloud formation.

(d) Coal combustion.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○

Particle characteristics

Figure: Polydisperse particles forming within a carrier flow through a pipe mixer.

Fluid and particulate phase

The evolution of the distribution $N(v, \mathbf{x}, t)$ can be described by the PBE

$$\frac{\partial N}{\partial t} + \frac{\partial (u_j N)}{\partial x_j} + \frac{\partial (GN)}{\partial v} = \frac{\partial}{\partial x_j} \left(\gamma_p \frac{\partial N}{\partial x_j} \right) + \dot{s} \tag{1}$$

while the fluid phase composition $\mathbf{Y}(\mathbf{x},t)$ evolves according to

$$\frac{\partial \rho \mathbf{Y}}{\partial t} + \frac{\partial \left(\rho u_j \mathbf{Y}\right)}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\rho \gamma \frac{\partial \mathbf{Y}}{\partial x_j}\right) + \rho \dot{\boldsymbol{\omega}}$$
(2)

where

- $\mathbf{u}(\mathbf{x},t), G(\mathbf{Y},v)$ Velocity field and particle growth rate
- $\gamma(\mathbf{x}, t)$, $\gamma_p(\mathbf{x}, t)$ Diffusivities
- $\dot{s}(\mathbf{Y}, N, v)$, $\dot{\boldsymbol{\omega}}(\mathbf{Y}, N)$ Production/destruction rates
- $\rho(\mathbf{x},t) = \hat{\rho}(\mathbf{Y}(\mathbf{x},t))$ Mixture density

Two main challenges

(b) Discretization in v-space

Figure: Polydisperse particles forming within a carrier flow.

Turbulence-chemistry interaction

Based on the mass-based number density

$$N_{\rho}(v, \mathbf{x}, t) \equiv \frac{N(v, \mathbf{x}, t)}{\rho(\mathbf{x}, t)}$$
(3)

we consider the Joint scalars-number density pdf

$$f(\mathbf{y}, n; v, \mathbf{x}, t) = \langle \delta \left(\mathbf{y} - \mathbf{Y}(\mathbf{x}, t) \right) \delta \left(n - N_{\rho}(v, \mathbf{x}, t) \right) \rangle$$
(4)

Its density-weighted counterpart $\tilde{f}(\mathbf{y}, n; v, \mathbf{x}, t)$ obeys

$$\begin{split} \langle \rho \rangle \frac{\partial \tilde{f}}{\partial t} + \langle \rho \rangle \tilde{u}_{j} \frac{\partial \tilde{f}}{\partial x_{j}} + G \frac{\partial \tilde{f}}{\partial v} &= \frac{\partial}{\partial x_{j}} \left(\langle \rho \rangle \Gamma \frac{\partial \tilde{f}}{\partial x_{j}} \right) \\ &- \langle \rho \rangle \frac{\partial}{\partial y_{i}} \left(\dot{\omega}_{i} + \mathcal{M}_{i} \right) \tilde{f} - \langle \rho \rangle \frac{\partial}{\partial n} \left(\frac{\dot{s}}{\hat{\rho}} - n \frac{\partial G}{\partial v} + \mathcal{M}_{p} \right) \tilde{f} \end{split}$$
(5)

Statistically, Eq. (5) is equivalent to the stochastic process

$$\frac{\partial \boldsymbol{\theta}}{\partial t} = -\left(\tilde{u}_j + \sqrt{2\Gamma}\dot{W}_j\right)\frac{\partial \boldsymbol{\theta}}{\partial x_j} - G\frac{\partial \boldsymbol{\theta}}{\partial v} - \dots + \mathbf{s} \tag{6}$$

LES-PBE-PDF framework

Figure: Illustrating the LES-PBE-PDF model (TE: Transport Equation).

Discretizing particle property space

Figure: Illustrating the discrete number density fields $N_i(\mathbf{x}, t)$, i = 1, ..., n + 1.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

An adaptive PBE discretization

- Construct a coordinate transformation $\bar{v}: (\tau, \mathbf{x}, t) \mapsto v$.
- Discretize the stochastic field equations on a fixed grid in τ -space.

Figure: Illustrating the effect of a coordinate transformation.

Delft flame III

Figure: Schematic representation of the flow domain for the Delft flame III ($Re \approx 8370$).

<ロト <回ト < 回ト < 回ト < 三ト - 三

Instantaneous fields

Temperature [K]

Soot volume density [-]

Figure: Temperature and stoichiometric mixture fraction as well as soot volume density.

Velocity and temperature in the near-field

Figure: Comparing mean axial velocity and temperature with measurements.

Radially integrated soot volume fraction

Figure: Comparing the radially averaged soot volume fraction with measurements.

Sample particle size distributions

Figure: Instantaneous particle size distributions along the radius at x = 480 mm.

・ロト ・部ト ・モト ・モト

æ

Time measurements

.

Physical process	Average runtime
Scalar convection/diffusion	1.589 s
Gas-phase reaction	2.476 s
Particle phase reaction	2.411 s
Flow field	1.696 s
All processes	8.172 s

Table: Average runtime for advancing the LES-PBE-PDF model by one time step of $\Delta t=10^{-6}\,{\rm s}$ on an Intel Xeon E5-2660 v2 processor.

Concluding remarks

Advantages of the LES-PBE-PDF model:

- Fully Eulerian solution scheme
- Easy to implement (or to combine with existing software)
- Physical model distinct from numerical solution scheme
- Predict entire particle property distribution
- Accommodate fluid/particle phase kinetics without approximation

Advantages of our explicit adaptive grid approach:

- Easy to implement
- \blacktriangleright Can be combined with any direct discretization scheme in $\tau\text{-space}$

- Can be combined with any time integration scheme
- Resolves sharp features
- Converges at an accelerated pace

Acknowledgements

We gratefully acknowledge the financial support by

the Imperial College PhD Scholarship Scheme,

and the computing resources provided by

the ARCHER UK National Supercomputing Service.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Selected references

- B. Judat and M. Kind. "Morphology and internal structure of barium sulfate-derivation of a new growth mechanism". In: *Journal* of Colloid and Interface Science 269.2 (Jan. 2004), pp. 341-353.
- [2] M. Köhler, K. P. Geigle, W. Meier, B. M. Crosland, K. A. Thomson, and G. J. Smallwood. "Sooting turbulent jet flame: characterization and quantitative soot measurements". In: *Applied Physics B: Lasers* and Optics 104.2 (2011), pp. 409–425.