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Modern gas turbine combustion is characterised by:

i. Lean equivalence ratios

ii. Partial premixing

iii. Swirl-stabilised flames

Simulations potentially need to account for:

i. Fuel injection and mixing

ii. Finite-rate chemistry effects

iii. Turbulence-chemistry interactions (LES)

iv. Wall heat transfer effects

v. Thermo-acoustic coupling

vi. …

Motivation

PRECCINSTA burner at DLR test rig 

(Meier et al. 2007) 
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Application of BOFFIN-LES to PRECCINSTA case:

i.  Fine mesh resolution in mixing region

ii.  15 step / 19 species CH4 mechanism (Sung et al. 2001)

iii.  Eulerian stochastic fields method (Jones et al. 2007)

iv.  Isothermal wall temperatures

v.  Addition of compressibility effects

vi. …

Numerical Approach
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‘Quiet’ Flame: Test Case

PRECCINSTA burner:

- equivalence ratio = 0.83

- ambient inflow conditions

- “no” thermo-acoustics
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‘Quiet’ Flame: Statistics

Symbols: Experiment

Lines: LES

114

mm
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‘Quiet’ Flame: Statistics

Black:  CO2 mass fraction

Grey:   CH4 mass fraction
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‘Quiet’ Flame: Statistics

CO measurement 

uncertainty of up to 50% 

(Meier et al. 2007)
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‘Quiet’ Flame: Topology

Small regions in the 

diffusion regime

 partially premixed



5UKCTRF 2018

Mean heat release rate 

(HRR) vs. mean OH* 

Chemiluminescence

‘Quiet’ Flame: Topology
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Improved agreement in terms of 

OH concentration when accounting 

for wall heat transfer (ht)

‘Quiet’ Flame: Topology
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Oscillating Flame: Test Case

PRECCINSTA burner:

- equivalence ratio = 0.7

- ambient inflow conditions

- thermo-acoustic oscillations
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Oscillating Flame: Statistics

Black: Wall heat transfer

Grey: Adiabatic
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Oscillating Flame: Statistics

Scalar fluctuations near 

centreline underpredicted

 thermo-acoustics?
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Potential challenges in the development of compressible LES solvers:

i. Compressible Navier-Stokes equations

ii. Pressure-density dependency

iii. Acoustic wave reflection at boundaries

Compressible LES
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Major modifications in BOFFIN-LES:

i.  Additional pressure time-derivative in scalar transport equation

ii.  Equation of state solved using calculated pressure

iii.  Characteristic outflow boundary condition (Lodato et al. 2008)

Compressible LES

Reflective outflow Non-reflective outflow
Non-reflective outflow
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Flame Dynamics

Compressible

LES

Incompressible

LES
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LES Pressure Signal

Chamber and plenum

pressure probes

Experimentally 

measured oscillations 

at 290 Hz
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Self-Excited Oscillations
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Thermo-Acoustic Coupling

• Rayleigh criterion

• Phase shift of ~80°

between chamber and 

plenum pressure

(similar to experiment)

 creates pressure drop
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Main drivers of the thermo-acoustic coupling:

i. Fluctuation of total mass flow rate entering combustion chamber

ii. Equivalence ratio fluctuation caused by fuel accumulation in swirler

iii. Flame surface modulation due to vortex breakdown / PVC?

Underlying Mechanisms
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Conclusions

I. Stochastic fields method

 Good agreement in terms of time-averaged statistics and flame topology

II. Wall heat transfer

 Improved temperature and species predictions especially near walls

III. Self-excited thermo-acoustic coupling

 Frequency prediction (300 Hz) close to measured value (290 Hz)

 Successful identification of main drivers

IV. Future work

 More detailed phase-dependent study of the oscillating flame case 
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