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Agenda

«State-of-the-art gas turbine combustion
*Practical methods for dynamics control

*Flame response of swirl-stabilized flames
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GT operating window

Cold tones 8 Hot tones
Operating window narrows, as % =
@®
— Efficiency increases c;) _%
— Turndown demand increases CO 2 =
. 2 ©
— Emissions targets reduce = @
— Component life increases = 9
© »n
— Cyclic operation increases -4 g
S Acceptable limits
| | | Equivaleﬁce Ratio, @ | | |
The Operating window will continue to decrease INfOSyS
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Axially-staged combustion systems
Standard GT

EV Combustor SEV Combustor

Axial Fuel Sequential combustion
staging

Combustion sustained by high upstream temperatures Infog5®
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Axial Fuel Staging and Sequential

Temperature

High load

_A

®

Inlet

Distance along combustor Exit |n
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Examples of 15t stage burners

Free-standing Vortex Breakdown Anchored Vortex Breakdown
EV Burner Swozzle

Fluid mechanics designed for flame stabilization |ﬂfO$/S®
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Lean premixed burner technologies:
free-standing vortex breakdown

Rich Premix Mode

-

e Start-up with high fuel
concentration on axis
* Good stability at low load

stage %;‘:/

Gas
Concentration
Profile

Vortex Gas
hreakdown injection

Lean Premix Mode

e fuel is evenly distributed
* Low NOx emissions at high load

Infosys
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Lean premixed burner technologies:
anchored vortex breakdown

Rich Premix Mode

e Good stability at low load

Lean Premix Mode

e fuel is evenly distributed
e Low NOx emissions at high load

Infosys
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Control of combustion dynamics

Fuel inhomogeneity Damping

Variable fuel staging Low Frequency dampers

e Burner staging e Large volume

¢ Main/pilot fuel split variation e Fairly easy to define mode shape
High frequency dampers

Drawback e Small volume

e Cost of fuel stages e Difficult to define mode shape

e Impact on NOx Drawback
e Cost

e Some impact on NOx

Prediction of combustion dynamics is a critical challenge Infosys
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Swirl Burner aerodynamics

5

U/U burner

W/Uburner

Water flow rig

r/OD |n .
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Swirl Burner aerodynamics

LES, Variant A LES. Variant B

xID

0
r/D

-0.5 0.5

0
riD

Exper, LDA, Variant A

Exper, LDA, Variant B

xiD

Minor change in BC has a major impact

11

Water flow rig

Infosys
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Burner aerodynamics — impact of head air
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06r___.LES, 8m=0.7% 06p---. LES, 8m=0.93% 06r---- LES, 8m=1.07%
04f —— RANS, 8m=07% " 04 o e e
e o
= 0.2 nzf
Q of g of
0.2 -0.2F A
> B ) Ny
L - -0.4 rew | -04F St
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-0.8 B 05 ] -0.8 0 05 -0.8 j 05 )
/D /D x/D
_____ LES, ém=0.7% ... LES 8m=093% coweLES, $m=1.07%
15k 15 g 15F

o Exper, dm=1.5%
o [

Exper, 5m=2.0%

0O Exper, dm=2.5%

Head air tailored to match experiment

Infosys
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Atmospheric combustion tests
VariantA VariantB
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FTF from atmospheric combustion tests
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FTF : Comparison between LES and experiment
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LES — split into contributions from f and u contributions

FTF

Variant A
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Summary

* Axial staged systems expand capabilities

 Control and mitigation of dynamics costs entitlement

*Vortex breakdown is highly dependent upon upstream flow

* Incompressible analysis sheds light on combustion dynamics
*LES is essential to reasonably represent the flow field

« Combination of numerics and experiments is essential
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