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1.1 Motivation

• Lean premixed combustion of natural gas (NG) in IC engine is attracting to reduce

particulate and NOx emission, with poor ignitability.

• Dual-fuelling, ignition of natural gas (NG) by a high-cetane fuel (e.g. DME),

presents promise to ensure successful combustion initiation control.

• Dual-fuel combustion involves combined processes of autoignition, diffusion

flames, and flame propagation, which is challenging for experimental

measurement and numerical modelling.

Few fundamental numerical studies of dual-fuel ignition:

• Ignition in laminar heptane/CH4-air mixing layer (Wang et al. 2015).

• Heptane droplets ignition in CH4-air (Demosthenous et al. 2016).

• Pilot ignited DME/CH4-air (Soriano & Richardson)

• Dynamics of triple flames in igniting DME/CH4-air (Tai Jin, Kai Luo

et al. PCI, 2018)

 Understanding of the ignition dynamics in dual-fuel mixture is

of great importance for design and control.



Autoignition in diesel engines occurs as a multi-stage process, involving Low- and High-

temperature combustion (LTC & HTC)

Single-stage HTI in turbulent mixture no earlier than HID (τHT,mr) (Mastorakos, 2009)

LT ignition (LTI) transits to propagating cool flame:

• Accelerate HTI, earlier and richer than τHT (Borghesi et al. (2015), Krisman et al. (2016,

2017), Borghesi et al. (2018))

• No accelerated HTI, vary between 2 and 3 times τHT in n-heptane jet (Krisman et al. (2017))

1.2 Objectives

LTI to cool flame?

Accelerate or not?

Borghesi et al. (2018) Krisman et al. (2017)



2.1 Ignition in dual-fuel mixture

Configuration 2:
Partially mixing
Relevant to RCCI

Mixture fraction: ξ =(YN2 - YN2,o)(YN2,f - YN2,o)
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Initial scalar profiles: 𝛿 = 24 𝜇𝑚

Initial turbulence fluctuations:

Configuration 1:
Pilot-ignited 
DME/CH4-air

ξ∈(0,1)
Single 𝛻 ξ

ξ∈(0,0.2), ξ∈(0,0.4)
Various 𝛻 ξ

Tai Jin et al., PCI (2018) Tai Jin et al., submitted

Initial scalar 
profile across 
mixing layer



2.2 Numerical Schemes

1. Spatial discretization: Eighth-order central differencing scheme

2. Temporal discretization: Fourth-order Runge-Kutta method (RK44)

3. Filtering: Explicit tenth-order filter method (suppress high wavenumber errors)

4. Boundary conditions

 Improved Navier-Stokes characteristic boundary conditions (NSCBC)

5. Parallel strategy: MPI communication + CPU decomposition

Governing equations: Continuity + Navier-Stokes + Species/Energy transport + EOS

A fully compressible in-house DNS code



2.3 Chemical mechanism

• Reduced by Dr. Tianfeng Lu from a validated detailed DME/CH4 mechanism

(Mech_56.54) by Prof. Curran (2015)

• 25 species in 147 reaction steps

• Validated in ignition delay time, perfectly stirred reactor (PSR) extinction

residence time, laminar premixed flame speed



2.4 Homogeneous Ignition Delay

CH4-air (φ=0.6)  +DME

• One stage ignition  two stages

• T_o increase, ξMR for the two 

stage ignition increase

• τst decrease significantly 

Stoichiometric mixture 

(Pure CH4, Pure DME, CH4+DME)+air

With DME added, 

• Ignition delay (ID) decreases significantly,

• NTC effects.

• ξ =(YN2-YN2,o)     

/(0-YN2,o)

• ξ increase: 

more DME 

added



3. Pilot-ignited dual fuel combustion

Case φ ξmax T_f (K) T_o (K) U’ (m/s) L11 (mm)

1 0.3 1.0 450 1050 0.5 0.2

2 0.6 1.0 450 1050 0.5 0.1

3 0.6 1.0 450 1050 1.0 0.1

4 0.6 1.0 450 1300 1.0 0.1

Computational parameters

The computational domain with 

DME and methane-air mixture

ξst



3.1 Ignition case 1

HRR (W/m3), at 0.008, 0.06, 0.16, 0.23, 

0.25, 0.29, 0.29, 0.33 and 0.41 ms

• First stage ignition (LT) transits to 

propagating cool flame

• High T ignition kernel discretely located 

in fuel rich mixture

• Triple flames propagating along the ξst

line

• Lean premixed branch initiates the 

premixed methane-air flame

Case 1, φ=0.3, ξmax=1.0, Lt=0.2 mm

Tai Jin, Kai H. Luo et al. Dynamics of triple-flames 

in ignition of turbulent dual fuel mixture: a direct 

numerical simulation study, PCI, 2018.



Temporal evolution of HRR (W/m3), t*=0.8, 1.2, 1.6, 2.0. 

The ignition and flame 

initiation process is 

qualitatively consistent with

φ=0.3

Case 2, φ=0.6, ξmax=1.0, Lt=0.1 mmCool 

flame
HIKs

TPFs

3.2 Ignition case 2



Case 4, φ=0.6, T_o=1300K

Time evolution of HRR (W/m3), t*=0.864, 1.0, 1.2, 1.2. 

• The ignition process is 

qualitatively consistent 

with Cases 1&2

• High T ignition kernels 

much bigger

3.3 Ignition case 3



3.4 HT ignition kernels

ξst ξst

No obviously accelerated accelerated

• Most of HIKs located around ξmr

• HIKs in fuel rich mixtures are accelerated
• Velocity fluctuation, no significant change time of HIKs

• HIKs located in a wide 
range of ξ (fuel rich)

• HIKs are accelerated



case T_o (K)  ξ ξ′ ξMR ξst ID @ ξMR 1st ξMR 1st ID

1 1050 0.4 0.025 0.19 0.0413 2.3e-4 0.14 8.71e-5

2 1050 0.2 0.015 0.19 0.0413 2.3e-4 0.14 8.71e-5

3 1300 0.4 0.025 0.046 0.0413 1.62e-4 0.289 7.29e-5

T (K)

6001000 00.6

ξ / Y-DME

4. Ignition in turbulent dual-fuel mixture

Computational parameters



4.1 Ignition-case 1

• First stage ignition 

(LT) transits to 

propagating cool 

flame

• High T ignition kernel 

discretely located in 

fuel rich mixture

Case 1,  𝛏=0.4



4.1 Ignition-case 1

• High T flames connected

• No obvious propagating 

triple flames

• Lean premixed branch 

initiates the premixed 

methane-air flame

Case 1,  𝛏=0.4



The role of diffusion in supporting the cool flame, transport budget analysis for the LTC 

marker YCH3OCH2O2 

Ignition front: R>>D, Propagating flame front: R≃D (R-reactive, D-diffusion terms)

• A.B: 

R>>D, ignition front, 

χ relatively low

• C-F:

R&D increase, R≃D, 

cool flame front

4.1 Ignition-case 1



4.2 Ignition-case 2

Case 2,  𝛏=0.2

• Cool flame exists around low T mixture 

(high ξ, larger 1st stage ignition delay) 

• HRR, Y-CH3OCH2O2, relatively high 

around cool flame

• High T ignition occur in a large area, not 

in discrete kernels



4.2 Ignition-case 2

• High T flames emerge with each other

• High T flames connected, propagate 

across ξst, and initiate the premixed 

methane-air flame

Case 2,  𝛏=0.2



4.3 Ignition-case 3

Case 3,  𝛏=0.4, T_o=1300K

• Cool flame develops both in 

the central region and in the 

mixing layer

• HTI first initiate along ξst, 

around single-stage ξmr

• third-stage ignition kernels



4.4 HT ignition kernels

ID of CH4/air: 6.98ms
Premixed CH4/air flame 
initiation time:
Case 1: 0.34ms
Case 2: 0.26ms

Time of HIKs compared with homogeneous 
ignition delay times

Case 2,  𝛏=0.2

Case 1,  𝛏=0.4

HIKs in fuel rich mixture, accelerated
Comparable with τHT,mr

HIKs in fuel rich mixture
HT ID shorter than the shortest τHT,mr



4.4 HT ignition kernels

ξ∈(0,1)
Single 𝛻 ξ

ξ∈(0,0.4)
Various 𝛻 ξ

T_o=1300K
u’=1.0 m/s

T_o=1300K
U’=0.5 m/s



5. Conclusions

LTI to cool flame?

Accelerate or not?

• High-T ignition in fuel quite rich mixture is accelerated by passage of cool 

flame

• High-T ignition can be shorter than the shortest τHT,mr

• Depends on the mixture fraction gradient (ignition delay gradient)

Ignition dynamics in turbulent DME/methane-air mixture via DNS

• The ignition process involves both LTC and HTC, varies with the thermo-

chemical conditions, as well as turbulence  

• Low temperature combustion plays a vital role 
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