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1 Introduction

Direct Numerical Simulation (DNS) of turbulent combustion involves the solution of the augmented
Navier–Stokes equations without modelling of the turbulence, and with an adequate treatment of the
chemistry and the molecular transport of momentum, heat and mass. Ideally the chemical reaction
mechanism would be represented in fully detailed form, as would the various mechanisms of molecular
transport, and a separate balance equation would be solved for the mass fraction of every chemical
species present in the reacting gas mixture. Such a full treatment remains computationally unaffordable
for practical simulations, and some degree of compromise is necessary in order to make progress.

The SENGA2 code was derived from the earlier SENGA code [1] which remains in use for DNS with
simplified chemistry. The purpose of the SENGA2 code is to facilitate combustion DNS with any desired
level of chemistry, from single-step Arrhenius mechanisms through all classes of reduced reaction mech-
anisms up to fully detailed reaction mechanisms wherever this is feasible computationally. Molecular
transport can be represented using any type of Fickian diffusion law or more complex treatments. The
Navier–Stokes momentum equations are solved in fully compressible form together with the continuity
equation and a conservation equation for the stagnation internal energy, as well as any required number
of balance equations for species mass fraction. Each component of the reacting mixture is assumed to
obey the equations of state for a semi–perfect gas. Boundary conditions are specified using an extended
form of the Navier–Stokes Characteristic Boundary Condition (NSCBC) formulation [2, 3], and available
boundary condition types include periodic as well as several varieties of walls, inflows and outflows.

The numerical framework is based on a high–order finite–difference approach for spatial discretisation
together with a Runge–Kutta algorithm for time–stepping. Spatial differencing schemes are implemented
in the code through a set of modular spatial differentiator routines, and examples of those tested include
Fourier spectral schemes and high–order Padé finite–difference schemes [4]. High–order explicit schemes
are preferred due to their speed of execution and ease of parallel implementation, and a 10th order
explicit scheme is standard for interior points. The accuracy of the scheme is reduced to 8th, 6th and 4th
order as a non–periodic boundary is approached. For time–stepping, the Runge–Kutta algorithm may be
adjusted to have any number of sub–steps in order to achieve the required order of accuracy. Adaptive
time–stepping is available with error control using an embedded Runge–Kutta scheme. The standard
time–stepping algorithm is a five–step fourth–order explicit Runge–Kutta method with a third–order
embedded scheme [5] together with a PID–type time step controller [6]. The code is fully parallel using
domain decomposition over a Cartesian topology.

The chemical and thermodynamic data required for each simulation is handled in a compact tabular
form in order to maximise computational efficiency during a simulation. A pre–processor code called
PPCHEM is available to convert data from a simple text–based format into the required form for input to
SENGA2.

2 Mathematical Formulation

2.1 Governing Equations

The governing equations to be solved using DNS are the partial differential equations for compressible
reacting flow, consisting of the continuity equation

∂

∂t
ρ +

∂

∂xk
ρuk = 0, (1)

the Navier–Stokes momentum equations

∂

∂t
ρui +

∂

∂xk
ρukui = − ∂

∂xi
p +

∂

∂xk
τki, (2)

and the internal energy equation

∂

∂t
ρE +

∂

∂xk
ρukE = − ∂

∂xk
puk − ∂

∂xk
qk +

∂

∂xk
τkmum, (3)
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supplemented by an equation for the mass fraction of each of the N chemical species present in the
reacting gas mixture

∂

∂t
ρYα +

∂

∂xk
ρukYα = wα − ∂

∂xk
ρVα,kYα. (4)

The thermal equation of state for the mixture is

p = ρR0T

N
∑

α=1

Yα

Wα
(5)

while the caloric equation of state provides the definition of the stagnation internal energy as

E =
N

∑

α=1

Yαhα − P

ρ
+

1

2
ukuk (6)

where the enthalpy of species α is defined as

hα =

∫ T

T0

CpαdT + h0
α, (7)

in which Cpα is the mass–based specific heat capacity of species α and h0
α is the species enthalpy at the

reference temperature T0. The viscous stress tensor is given by

τki = µ

(

∂uk

∂xi
+

∂ui

∂xk

)

− 2

3
µ

∂um

∂xm
δki, (8)

and the heat flux vector by

qk = −λ
∂T

∂xk
+

N
∑

α=1

ρVα,kYαhα (9)

The species mass fractions are subject to the compatibility condition

N
∑

α=1

Yα = 1 (10)

while the diffusion velocities must satisfy the compatibility condition

N
∑

α=1

Vα,kYα = 0. (11)

For a reaction mechanism involving M steps of the form

N
∑

α=1

ν′

α,mMα →
N

∑

α=1

ν′′

α,mMα, m = 1, . . . , M (12)

the chemical production rate wα for species α is expressed as

wα = Wα

M
∑

m=1

(

ν′′

α,m − ν′

α,m

)

km(T )

N
∏

β=1

c
ν′

β,m

β . (13)

where the specific reaction rate coefficient km(T ) is given by the Arrhenius expression

km(T ) = AmT nm exp

(

− Em

R0T

)

(14)
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and the concentration cβ of species β is related to mass fraction by

cβ =
ρYβ

Wβ
. (15)

For the reaction rates the compatibility condition is

N
∑

α=1

wα = 0. (16)

2.2 Thermodynamic Quantities

For a semi–perfect gas, the molar specific heat capacity at constant pressure C̄pα is known to depend on
temperature, and for present purposes the dependence is represented in an approximate manner using a
polynomial of the form

C̄pα

R0
=

J
∑

j=1

ā
(l)
α,jT

j−1 (17)

where the degree J − 1 of the polynomial is typically taken to be 4 or 5. The polynomial coefficients

a
(l)
α,j may take different values for each species α in different intervals l of temperature. For example, the

popular CHEMKIN database [7] uses polynomials of degree 5 with two temperature intervals: for most
species the intervals are 0 < T < 1000K (l = 1) and 1000K ≤ T < 3000K (l = 2). The molar enthalpy
for each species is given by integrating over L successive temperature intervals l = 1, . . . , L to yield the
recursive formula

h̄α = R0

∫ T

TL−1

J
∑

j=1

ā
(L)
α,jT

j−1dT + R0
L−1
∑

l=1





∫ Tl

Tl−1

J
∑

j=1

ā
(l)
α,jT

j−1dT



 + h̄0
α

= R0
J

∑

j=1

ā
(L)
α,j

j
T j − R0

J
∑

j=1

ā
(L)
α,j

j
T j

L−1 + h̄(L−1)
α . (18)

where the reference temperature T0 has been taken at 0K, and h
(L−1)
α denotes the enthalpy at the lower

end of the current (Lth) temperature interval. The last two terms may be combined to form a single

coefficient ā
(L)
α,J+1, and the final form for the molar enthalpy becomes

h̄α = R0





J
∑

j=1

ā
(L)
α,j

j
T j + ā

(L)
α,J+1



 (19)

Similarly, the molar entropy for each species may be found using the definition

s̄α = R0

∫ T

T0

C̄pα

T
dT + s̄0

α, (20)

substituting for C̄pα and integrating over successive temperature intervals to give

s̄α = R0



ā
(L)
α,1 ln T +

J
∑

j=2

ā
(L)
α,j

j − 1
T j−1





− R0



ā
(L)
α,1 ln TL−1 +

J
∑

j=2

ā
(L)
α,j

j − 1
T j−1

L−1



 + s̄(L−1)
α (21)
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where once again the formula may be applied recursively, and s
(L−1)
α is the entropy at the lower end of

the current temperature interval. Combining the last three terms to form a single coefficient ā
(L)
α,J+2, the

final form for the molar entropy is

s̄α = R0



ā
(L)
α,1 lnT +

J
∑

j=2

ā
(L)
α,j

j − 1
T j−1 + ā

(L)
α,J+2



 (22)

The mass-based specific heat capacity Cpα is given by

Cpα =
R0

Wα

J
∑

j=1

ā
(l)
α,jT

j−1 =
J

∑

j=1

a
(l)
α,jT

j−1 (23)

where the mass-based polynomial coefficients are defined as

a
(l)
α,j =

R0

Wα
ā
(l)
α,j . (24)

Then the mass-based specific enthalpy for each species is

hα =

J
∑

j=1

a
(L)
α,j

j
T j + a

(L)
α,J+1 (25)

and the mass-based specific entropy for each species is

sα = a
(L)
α,1 lnT +

J
∑

j=2

a
(L)
α,j

j − 1
T j−1 + a

(L)
α,J+2. (26)

2.2.1 Temperature

The temperature may be obtained using the caloric equation of state (6) in the form

E =

N
∑

α=1

Yαhα − RmT +
1

2
ukuk (27)

where the specific gas constant for the mixture is

Rm =

N
∑

α=1

YαRα. (28)

Substituting the polynomial form of the species enthalpy hα from (25) gives

E =

N
∑

α=1

Yα





J
∑

j=1

a
(l)
α,j

j
T j + a

(l)
α,J+1



 − RmT +
1

2
ukuk (29)

and gathering terms in successive powers of T produces the polynomial

f(T ) =

[

(

1

2
ukuk − E

)

+
N

∑

α=1

Yαa
(l)
α,J+1

]

+

[

N
∑

α=1

Yα

(

a
(l)
α,1 − Rα

)

]

T +
J

∑

j=2

[

N
∑

α=1

Yα

a
(l)
α,j

j

]

T j (30)

which may be used to form the non-linear algebraic equation f(T ) = 0 whose solution determines the
temperature.
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2.3 Transport Coefficients

The molecular transport coefficients are represented using the relationship

λ

Cp
= Aλ

(

T

T0

)r

(31)

for the mixture thermal conductivity λ, where Cp is the mixture value of the specific heat capacity at
constant pressure, and Aλ, r and T0 are constants. Then the mixture dynamic viscosity µ is given by

µ =
λ

Cp
Pr (32)

where Pr is the mixture Prandtl number which is taken as a constant.

The diffusive mass flux for species α may be represented using Fick’s law as:

ρVα,kYα = −ρDα
∂Yα

∂xk
. (33)

in which the diffusion coefficient Dα for each species is given by

Dα =
λ

ρCpLeα
(34)

where Leα is the Lewis number. The standard approach assumes that Leα is constant for each species.

Applying this assumption in Fick’s Law does not guarantee that the continuity equation will be recovered
when all N of the species mass fraction equations are summed. Substituting (33) into (4) and summing
over all species yields

∂

∂t
ρ +

∂

∂xk
ρuk =

N
∑

α=1

∂

∂xk
ρDα

∂Yα

∂xk
. (35)

where the compatibility conditions (10) and (16) have been applied to the mass fractions and reaction
rates respectively. Clearly, by comparison with the continuity equation (1) the quantity on the right-hand
side is an error term. This term can be removed by making a slight modification to Fick’s law [8]:

ρVα,kYα = −ρDα
∂Yα

∂xk
+ ρV

(c)
k Yα (36)

where the correction velocity V
(c)
k is given by

ρV
(c)
k =

N
∑

α=1

ρDα
∂Yα

∂xk
. (37)

Applying the compatibility condition (11), the modified form (36) ensures that the continuity equation
(1) is recovered as required.

2.4 Reaction Rate

Evaluation of the chemical production rate wα for species mass fraction makes use of the general formu-
lation expressed by (13)-(15). There is a summation over all steps in the reaction mechanism

wα = Wα

M
∑

m=1

w̄α,m (38)

where w̄α,m is the molar production rate of species α in the step. Each step in the reaction mechanism
may involve one of several possible special cases.
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2.4.1 Forward Reaction Rate

For a forward reaction step as expressed by

N
∑

α=1

ν′

α,mMα →
N

∑

α=1

ν′′

α,mMα (39)

the molar production rate w̄α,m is given by

w̄α,m =
(

ν′′

α,m − ν′

α,m

)

km(T )

N
∏

β=1

c
ν′

β,m

β . (40)

with km(T ) given by (14) and cβ by (15). This is the simplest and most common type of reaction step.

2.4.2 Backward Reaction Rate: Gibbs Function

In cases where a reaction step m is specified using the equilibrium notation

N
∑

α=1

ν′

α,mMα ⇀↽

N
∑

α=1

ν′′

α,mMα (41)

the molar production rate for a single species is given by

w̄α,m =
(

ν′′

α,m − ν′

α,m

)



kf,m(T )

N
∏

β=1

c
ν′

β,m

β − kb,m(T )

N
∏

β=1

c
ν′′

β,m

β



 . (42)

Often, only the data for the forward rate coefficient kf,m(T ) are supplied, and it becomes necessary to
evaluate the backward rate coefficient kb,m(T ) using the equilibrium constant for concentrations

Kc,m =

N
∏

α=1

c
(ν′′

α,m−ν′

α,m)
α =

kb,m

kf,m
(43)

The relation between Kc,m and the equilibrium constant for partial pressures K0
p,m is given by

Kc,m = K0
p,m

( p0

R0T

)∆νm

(44)

where p0 is a reference pressure used to make K0
p,m dimensionless, and ∆νm =

∑N
α=1(ν

′′

α,m − ν′

α,m) is the
difference in the total number of moles between reactants and products. In turn, K0

p,m is related to the
change in the molar Gibbs function according to

R0T ln K0
p,m = ∆Ĝm =

N
∑

α=1

ḡα(ν′′

α,m − ν′

α,m) (45)

where ḡα = h̄α −T s̄α is the molar Gibbs function for species α. Using (19) and (22), ḡα can be expressed
conveniently as

ḡα

R0T
=

ā
(L)
α,J+1

T
− ā

(L)
α,1 lnT + (ā

(L)
α,1 − ā

(L)
α,J+2) −

J
∑

j=2

ā
(L)
α,j

j(j − 1)
T j−1 (46)
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Writing kf,m and kb,m in Arrhenius form according to (14), and using (43) together with (44) and (46)
yields a set of expressions for the parameters of the backwards reaction rate coefficient

lnAb,m = lnAf,m

+

N
∑

α=1

(ν′′

α,m − ν′

α,m)

[

ā
(L)
α,1 − ā

(L)
α,J+2 + ln

(

P0

R0

)]

− lnAΣ
b,m(T ) (47)

nb,m = nf,m −
N

∑

α=1

(ν′′

α,m − ν′

α,m)
[

āL
α,1 + 1

]

(48)

Eb,m

R0
=

Ef,m

R0
+

N
∑

α=1

(ν′′

α,m − ν′

α,m)
[

āL
α,J+1

]

(49)

Note that there is a non-Arrhenius contribution to (47) denoted by lnAΣ
b,m(T ). This term arises from

the temperature dependence of Cpα, and is given by

lnAΣ
b,m(T ) =

N
∑

α=1

(ν′′

α,m − ν′

α,m)

J
∑

j=2

ā
(L)
α,jT

j

j(j + 1)
. (50)

Due to this term the backward rate coefficient kb,m has a temperature dependence over and above that
indicated by the Arrhenius form. This means that the contribution lnAΣ

b,m(T ) cannot be computed
in advance and hence kb,m must be evaluated “on the fly” during a simulation. This may be done by
combining (43)-(46) to yield

ln kb,m = ln kf,m +

N
∑

α=1

(ν′′

α,m − ν′

α,m)
( ḡα

R0T
+ ln

p0

R0
− lnT

)

(51)

2.4.3 Third Bodies

In cases where a reaction step m is of the form

N
∑

α=1

ν′

α,mMα + M →
N

∑

α=1

ν′′

α,mMα + M (52)

the molar production rate for a species α is given by

w̄α,m =
(

ν′′

α,m − ν′

α,m

)

km(T )cM

N
∏

β=1

c
ν′

β,m

β . (53)

where the concentration cM of the “third body” M is given by

cM =

N
∑

α=1

ηα,Mcα (54)

in which the coefficients ηα,M are the third-body efficiencies for M .
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2.4.4 Lindemann Forms

Some three–body reaction steps may have a specific reaction rate coefficient k which depends on pressure
as well as temperature. The simplest representation is the Lindemann form [9]:

kL,m = k∞,m

(

Pr

1 + Pr

)

Fm (55)

where k∞,m is the rate coefficient in the limit of high pressure and Fm is a constant normally taken equal
to unity although other values may be specified instead. The quantity Pr is a “reduced pressure” defined
as

Pr =
k0,m

k∞,m
cM (56)

where k0,m is the rate coefficient in the limit of low pressure and cM is the third–body concentration as
defined in (54). Both k∞,m and k0,m have the standard Arrhenius form (14). A Lindemann reaction step
requires the specification of seven values, i.e. the three parameters A, n and E for each of k∞,m and
k0,m, together with the value of Fm.

2.4.5 Troe Forms

For some pressure–dependent three–body reaction steps the Lindemann form is found to be insufficient
and the Troe form is preferred [10]. The Lindemann representation (55) is retained with the reduced
pressure Pr defined as in (56), but now Fm is specified as a function

log Fm =

[

1 +

(

log Pr + c

n − d(log Pr + c)

)2
]

−1

log Fcent (57)

The quantities c and n are defined as:

c = c1 − c2 log Fcent; n = n1 − n2 log Fcent (58)

where the standard values are c1 = −0.4, c2 = 0.67, n1 = −0.75, n2 = 1.27 and d = 0.14. The function
Fcent is given by

Fcent = (1 − α) exp

(

− T

T ∗∗∗

)

+ α exp

(

T

T ∗

)

+ exp

(

−T ∗∗

T

)

. (59)

A total of fifteen values must be specified for a Troe step, consisting of the three parameters A, n and E
for each of k∞,m and k0,m, the quantities α, T ∗, T ∗∗ and T ∗∗∗, and the constants c1, c2, n1, n2 and d.

2.4.6 SRI Forms

A third form for pressure–dependent three–body reactions is due to SRI International [11]. Again the
Lindemann representation defined by (55) and (56) is retained, but now the function Fm is defined as

Fm = d

[

a exp

(

− b

T

)

+ exp

(

−T

c

)]X

T e (60)

where d and e are normally set to unity, and X is given by

X =
1

1 + log2 Pr

. (61)

Each SRI step requires eleven values, which are the three parameters A, n and E for each of k∞,m and
k0,m, together with the five constants a, b, c, d and e.
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2.5 Boundary Conditions

The boundary conditions are specified according to the NSCBC (Navier–Stokes Characteristic Boundary
Condition) formalism [2, 3]. At the boundary, the governing equations may be restated in conservative
form as [3]

∂U

∂t
+ ∇(n) ·C(n) + ∇(t) · C(t) = D + s (62)

where the vector of conservative variables is given by U = {ρ, ρu, ρv, ρw, ρE, ρYα}T , and where C is
the vector of convective fluxes, D is the vector of diffusive fluxes, s is the vector of source terms and
the subscripts (n) and (t) denote the normal and tangential directions to the boundary. The NSCBC
formalism operates within the Local One-Dimensional Inviscid (LODI) approximation, in which the
tangential convective terms and all molecular transport terms are neglected for the purposes of the
boundary-condition analysis. The conservative form of the LODI equation set is:

∂U

∂t
+ ∇(n) ·C(n) = s (63)

in which C(n) = {ρun, ρunu1 + pδn1, ρunu2 + pδn2, ρunu3 + pδn3, ρunE + pun, ρunYα}T is the boundary-
normal convective flux vector and s = {0, 0, 0, 0, 0, wα}T is the vector of source terms.

The characteristic analysis proceeds using a vector of primitive variables which may be defined in
terms of pressure as U = {ρ, u, v, w, p, Yα}T . Derivatives of the convective and primitive variables are
related using the Jacobian matrix P given by

P =
∂U

∂U
=































1 0 0 0 0 0 0 . . . 0
0 ρ 0 0 0 0 0 . . . 0
0 0 ρ 0 0 0 0 . . . 0
0 0 0 ρ 0 0 0 . . . 0

E − CvT ρu ρv ρw 1
γ−1 ρĥ1 ρĥ2 . . . ρĥN

Y1 0 0 0 0 ρ 0 . . . 0
Y2 0 0 0 0 0 ρ . . . 0
...

...
...

...
...

...
...

. . .
...

YN 0 0 0 0 0 0 . . . ρ































(64)

where Cv is the specific heat capacity at constant volume for the mixture

Cv =

N
∑

α=1

YαCvα, (65)

γ is the ratio of specific heats for the mixture

γ =
Cp

Cv
=

∑N
α=1 YαCpα

∑N
α=1 YαCvα

(66)

and ĥα is the augmented species enthalpy given by

ĥα = hα − CpT
Rα

Rm
. (67)

The boundary-normal convective fluxes C(n) may be related to the spatial gradients of the primitive
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variables according to C(n) = Q(n).
(

∇(n)S
)

where the matrix Q(n) = ∂C(n)/∂U =































un ρδ1n ρδ2n ρδ3n 0 0 0 . . . 0
u1un ρ(un + u1δ1n) ρu1δ2n ρu1δ3n δ1n 0 0 . . . 0
u2un ρu2δ1n ρ(un + u2δ2n) ρu2δ3n δ2n 0 0 . . . 0
u3un ρu3δ1n ρu3δ2n ρ(un + u3δ3n) δ3n 0 0 . . . 0

un(E − CvT ) Q5,2 Q5,3 Q5,4
unγ
γ−1 ρunĥ1 ρunĥ2 . . . ρunĥN

unY1 ρY1δ1n ρY1δ2n ρY1δ3n 0 ρun 0 . . . 0
unY2 ρY2δ1n ρY2δ2n ρY2δ3n 0 0 ρun . . . 0

...
...

...
...

...
...

...
. . .

...
unYN ρYNδ1n ρYNδ2n ρYNδ3n 0 0 0 . . . ρun































(68)
in which the terms Q5,i+1 = (ρE + p)δni + ρunui for i = 1, . . . , 3.

Using these definitions the LODI equations (63) may be expressed in terms of primitive variables as

∂U

∂t
+ A

(n) ·
(

∇(n)U
)

= s (69)

where the matrix A
(n) is given by

A
(n) = P−1Q(n) =































un ρδ1n ρδ2n ρδ3n 0 0 0 . . . 0
0 un 0 0 δ1n/ρ 0 0 . . . 0
0 0 un 0 δ2n/ρ 0 0 . . . 0
0 0 0 un δ3n/ρ 0 0 . . . 0
0 γpδ1n γpδ2n γpδ3n un 0 0 . . . 0
0 0 0 0 0 un 0 . . . 0
0 0 0 0 0 0 un . . . 0
...

...
...

...
...

...
...

. . .
...

0 0 0 0 0 0 0 . . . un































(70)

and the corresponding vector of source terms for the primitive variables is s = {0, 0, 0, 0, sp, wα}T where

sp = −(γ − 1)
∑N

α=1 hαwα.

A final transformation into characteristic form is achieved through the decomposition A(n) = S(n)Λ(n)
(

S(n)
)−1

where Λ(n) is the diagonal matrix of the eigenvalues of A(n). The eigenvalues are listed in order as

λ
(n)
r = (un − a), un, un, un, (un + a), un, . . . , un with r = 1, . . . , N + 5, in which a is the speed of sound

for the mixture given by a2 = γRmT . The columns of the matrix S(n) are the right eigenvectors of A(n):

S
(n) =































1/a2 1 0 0 1/a2 0 0 . . . 0
−δ1n/ρa 0 1 − δ1n 0 δ1n/ρa 0 0 . . . 0
−δ2n/ρa 0 δ1n δ3n δ2n/ρa 0 0 . . . 0
−δ3n/ρa 0 0 1 − δ3n δ3n/ρa 0 0 . . . 0

1 0 0 0 1 0 0 . . . 0
0 0 0 0 0 1 0 . . . 0
0 0 0 0 0 0 1 . . . 0
...

...
...

...
...

...
...

. . .
...

0 0 0 0 0 0 0 . . . 1































(71)

The characteristic form is obtained by premultiplying (69) by
(

S(n)
)−1

to yield

∂U (n)

∂t
+ L(n) = S(n) (72)
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where the vectors ∂U (n)/∂t, L(n) and S(n) are given by

∂U (n)

∂t
=













































1
2

(

∂p
∂t − ρa∂un

∂t

)

∂ρ
∂t − 1

a2

∂p
∂t

∂
∂t (u1 + (u2 − u1)δ1n)

∂
∂t (u3 + (u2 − u3)δ3n)

1
2

(

∂p
∂t + ρa∂un

∂t

)

∂Y1

∂t

∂Y2

∂t
...

∂YN

∂t













































; L(n) =















































(un−a)
2

(

∂p
∂xn

− ρa∂un

∂xn

)

un

(

∂ρ
∂xn

− 1
a2

∂p
∂xn

)

un
∂

∂xn
(u1 + (u2 − u1)δ1n)

un
∂

∂xn
(u3 + (u2 − u3)δ3n)

(un+a)
2

(

∂p
∂xn

+ ρa∂un

∂xn

)

un
∂Y1

∂xn

un
∂Y2

∂xn

...

un
∂YN

∂xn















































; S(n) =









































1
2 sp

− 1
a2 sp

0

0

1
2 sp

w1

w2

...
wN









































(73)
In physical terms the vector ∂U (n)/∂t describes the amplitude variations of waves travelling across the

boundary at the speeds given by the eigenvalues λn
r . The vector L(n) = Λ(n)

(

S(n)
)−1 ·

(

∇(n)U
)

describes
the contribution to the amplitude variations due to spatial gradients of the primitive variables, while the
vector S(n) describes the contribution due to chemical reaction.

The vector L(n) is of central importance to the NSCBC formalism. The elements L(n)
1 and L(n)

5 describe
the left–running and right–running acoustic waves respectively, while the remaining elements describe

the convective transport of entropy (L(n)
2 ), transverse velocity components (L(n)

3 and L(n)
4 ), and species

mass fraction (L(n)
5+α). Manipulation of these elements allows for many different boundary conditions to

be set in a physically consistent manner, as described below. Once the manipulation is complete, it is
necessary to reconstruct the boundary-normal convective flux vector C(n) in the conservative form of the
equations. This is commonly done in two stages by pre–multiplying the characteristic form (72) by the
matrix S(n) to yield

∂U

∂t
+ d

(n) = s (74)

where d(n) = S(n)L(n) = A(n).
(

∇(n)U
)

, and then by pre–multiplying (74) by P to return to the conserva-
tive form (63). Alternatively the same procedure may be carried out in a single step by pre–multiplying
(72) by the matrix product PS(n) =



































1/a2 1 0 0 1/a2 0 0 . . . 0
(u − aδ1n)/a2 u ρ(1 − δ1n) 0 (u + aδ1n)/a2 0 0 . . . 0
(v − aδ2n)/a2 v ρδ1n ρδ3n (v + aδ2n)/a2 0 0 . . . 0
(w − aδ3n)/a2 w 0 ρ(1 − δ3n) (w + aδ3n)/a2 0 0 . . . 0

E51 E52 E53 E54 E55 ρĥ1 ρĥ2 . . . ρĥN

Y1/a2 Y1 0 0 Y1/a2 ρ 0 . . . 0
Y2/a2 Y2 0 0 Y2/a2 1 ρ . . . 0

0 0 0 0 0 0 1 . . . 0
...

...
...

...
...

...
...

. . .
...

YN/a2 YN 0 0 YN/a2 0 0 . . . ρ



































(75)

where

E51 =
E − CvT

a2
− u

a
δ1n − v

a
δ2n − w

a
δ3n +

1

γ − 1

E52 = E − CvT

E53 = ρ (u + (v − u)δ1n)
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E54 = ρ (w + (v − w)δ3n)

E55 =
E − CvT

a2
+

u

a
δ1n +

v

a
δ2n +

w

a
δ3n +

1

γ − 1
. (76)

Finally the new value of C(n) obtained using the LODI analysis must be used to replace the original term
in the full conservative form of the equations (62).

It should be noted that it may be necessary also to impose boundary conditions on the diffusive flux
terms D in order to meet the theoretical requirements for the Navier–Stokes equations [2]. This is done
in an ad-hoc manner as indicated below.

2.5.1 Outflow Boundary Conditions

Subsonic Non–reflecting Outflow

An acoustically non–reflecting outflow boundary condition may be imposed by allowing outgoing acoustic
waves to leave the domain while setting the amplitude variation of any incoming acoustic waves to

zero. On a left–hand boundary the right–going wave amplitude variation is L(n)
5 , while on a right–hand

boundary the left-going wave amplitude variation is L(n)
1 . The non–reflecting outflow boundary condition

is then given by

L(n)
5 = S5 (left);

L(n)
1 = S1 (right). (77)

Often it is desirable to impose a partially–reflecting boundary condition in order to allow the pressure at
the boundary to track some required value p∞. This is done using the prescription

L(n)
5 = S5 +

σ

2L
a(1 − M2)(p − p∞) (left);

L(n)
1 = S1 +

σ

2L
a(1 − M2)(p − p∞) (right) (78)

where σ is a constant having the value 0.287, L is the length scale of the domain in the boundary–normal
direction and M is the Mach number.

The diffusive flux vector D is modified by imposing the conditions

∂τin

∂xn
= 0;

∂qn

∂xn
= 0;

∂

∂xn
ρVα,nYα = 0 (79)

(where no summation is implied) on the normal and tangential components of the viscous stress tensor,
the heat flux vector and the diffusive flux vector.

2.5.2 Inflow Boundary Conditions

Subsonic Non–reflecting Laminar Inflow

An acoustically non–reflecting inflow condition may be set using the wave amplitude variations according
to

L(n)
5 = S5 (left);

L(n)
1 = S1 (right) (80)

together with

L(n)
2 = S2; L(n)

3 = 0; L(n)
4 = 0; L(n)

5+α = S5+α (81)

as well as the viscous condition
∂τnn

∂xn
= 0. (82)
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(with no summation). Note that this boundary condition does not allow for explicit control over the
values of the primitive variables which instead are calculated as part of the solution. In particular this
boundary condition does not allow the velocity components ui to be be imposed at the boundary, and so
this boundary condition cannot be used to specify a turbulent velocity field at the inlet.

Subsonic Reflecting Inflow With Specified Temperature

This condition is set by imposing the values of temperature T , all three velocity components ui and all
species mass fractions Yα at all points on the boundary. If required, any or all of these variables may be
specified as functions of time, and hence this condition does allow for a turbulent inflow condition. The
viscous condition

∂τnn

∂xn
= 0 (83)

(no summation) is also imposed. The density ρ is not specified as part of the boundary condition and
must be calculated as part of the solution. The LODI form of the continuity equation is

∂ρ

∂t
+

[

L(n)
2 +

1

a2

(

L(n)
5 + L(n)

1

)

]

= 0 (84)

and hence the values of L(n)
1 , L(n)

2 and L(n)
5 are required. These are obtained from the primitive variables

as

L(n)
5 = L(n)

1 − ρa
∂un

∂t
(left);

L(n)
1 = L(n)

5 + ρa
∂un

∂t
(right);

L(n)
2 =

ρ

T

∂T

∂t
+

γ − 1

a2

(

L(n)
1 + L(n)

5

)

+ ρW
N

∑

α=1

1

Wα

∂Yα

∂t
− ρ

p
sp (85)

It is clear from these relations that the time derivatives of the normal velocity component un, temperature
T and species mass fraction Yα must also be specified at the boundary.

Subsonic Reflecting Inflow With Specified Density

This condition is set by imposing the values of density ρ, all three velocity components ui and all species
mass fractions Yα at all spatial points on the boundary. All of these variables may be constant or they
may be specified as functions of time. The viscous condition

∂τnn

∂xn
= 0 (86)

(no summation) is also imposed. The internal energy ρE is not specified as part of the boundary condition
and must be calculated as part of the solution. The LODI form of the energy equation is

∂

∂t
ρE + (E − CvT )

[

L(n)
2 +

1

a2

(

L(n)
5 + L(n)

1

)

]

+
u

a

(

L(n)
5 − L(n)

1

)

+
1

γ − 1

(

L(n)
5 + L(n)

1

)

+ρut1L(n)
3 + ρut2L(n)

4 +

N
∑

α=1

ρĥαL(n)
5+α = 0

(87)

where uti is used to denote the two transverse velocity components at the boundary. Hence the values of
all the wave amplitude variations L(n) are required. These are obtained from the primitive variables as

L(n)
5 = L(n)

1 − ρa
∂un

∂t
(left);
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L(n)
1 = L(n)

5 + ρa
∂un

∂t
(right);

L(n)
2 = S2 −

∂ρ

∂t
− 1

a2

(

L(n)
5 + L(n)

1

)

L(n)
3 = −∂ut1

∂t

L(n)
4 = −∂ut2

∂t

L(n)
5+α = S5+α − ∂Yα

∂t
(88)

It is clear from these relations that the time derivatives of all the velocity components ui together with
ρ and Yα must also be specified at the boundary.

Specifying a Turbulent Velocity Field at Inlet

A turbulent velocity field at the inlet of the computational domain is specified by passing a scanning
plane through a pre–computed field of frozen turbulence. Values of all three velocity components and
their time derivatives are interpolated onto the scanning plane which is then mapped onto the domain
inlet plane. The speed uscan at which the scanning plane moves through the box of turbulence is taken
to be equal to the required constant inlet mean velocity umean plus a constant velocity increment uinc,
i.e. uscan = umean + uinc. The purpose of the velocity increment uinc is to allow the inlet turbulence to
evolve in time at the boundary, even in cases where Taylor’s hypothesis is not strictly valid [12]. The
location of the scanning plane is computed as xscan(t + δt) = xscan(t) + uscanδt for a time increment δt,
with a suitable (arbitrary) pre–set initial location xscan(0).

The frozen turbulent velocity field is provided in physical space but is stored as a set of Fourier coef-
ficients ûi(k̄1, x2, x3), where the Fourier transform is carried out in the boundary–normal direction only
(taken as x1 here for the purpose of illustration). The physical–space turbulent velocity components on
the scanning plane are calculated using Fourier interpolation according to the discrete Fourier transform

ui(xscan, x2, x3) =
1

Lx

Nx/2
∑

k̂x=−Nx/2

ûi(k̂x, x2, x3) exp
(

−2πik̄xxscan/Lx

)

(89)

These become the inlet–plane velocity components, after the addition of the inlet mean velocity umean.
The velocity time–derivatives required by the NSCBC inlet conditions (85) and (88) are obtained by
using the relation

∂ui

∂t
= uscan

∂ui

∂x1
(90)

where the spatial derivative is interpolated using the discrete Fourier transform

∂ui

∂x1
(xscan, x2, x3) =

1

L2
x

Nx/2
∑

k̄x=−Nx/2

−2πik̄xûi(k̄x, x2, x3) exp
(

−2πik̄xxscan/Lx

)

. (91)

2.5.3 Wall Boundary Conditions

A wall boundary is treated using an impermeability condition and a no-slip condition, with all velocity
components ui set to zero, perfect reflection of acoustic waves and no convective transport of entropy,
transverse velocity or mass fraction:

L(n)
1 = L(n)

5 ;

L(n)
2 = S2;

L(n)
3 = L(n)

4 = 0;

L(n)
5+α = S5+α (92)
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Isothermal Wall

For an isothermal wall there is an additional condition on the temperature:

T = Twall (93)

where Twall is a prescribed constant value of the temperature at the wall.

Adiabatic Wall

For an adabatic wall the temperature is not prescribed and instead the wall-normal component of the
heat flux vector is set to zero:

qn = 0. (94)

2.6 Initial Conditions

Initial conditions are required for all of the conserved variables. Constant and spatially–uniform values
are specified by default at start–up, but this is not usually sufficient and more realistic initial velocity
and acalar fields must be provided.

2.6.1 Turbulence Initial Conditions

The flow field of interest is usually turbulent, and the initial turbulent velocity field must be specified with
care to ensure that it is already a good approximation to a solution of the Navier–Stokes equations. This
minimises the magnitude of any initial transients and ensures that a true turbulent solution is achieved
as quickly as possible. A Fourier spectral method for the generation of high–quality turbulent initial
velocity fields was proposed by Orszag [13] and refined by Rogallo [14], and has become the de facto

standard procedure in DNS.
The method generates the physical–space velocity components ui(x, y, z; t = 0) corresponding to a

field of incompressible homogeneous isotropic turbulence with a prescribed energy spectrum function
E(k̄), where k̄ is the wavenumber vector magnitude in Fourier space. The spectrum function E(k̄)
is used to specify the initial values of the RMS velocity fluctuation magnitude u′, the integral length
scale L, the Taylor length scale λ and the Kolmogorov length scale η. Along with the viscosity ν, the
spectrum function also specifies the initial turbulence energy dissipation rate ε. It should be noted that
the restriction to incompressible flow does not preclude the use of the initial velocity field to start a
compressible or reacting flow simulation, provided that the scalar field is also well specified.

The default spectrum function is the Batchelor–Townsend spectrum [15] which is appropriate to low–
Reynolds number turbulence of the kind achievable in current DNS, although other spectrum functions
are also available. The form of the Batchelor–Townsend spectrum is given by

E(k) = c0
k̄4

k̄5
0

exp

[

−2

(

k̄

k̄0

)2
]

(95)

where the two parameters are c0 which controls the total kinetic energy, and k̄0 which is the wavenumber
of the maximum energy point in the spectrum. Using the Batchelor–Townsend spectrum the principal
turbulence quantities may be expressed in closed form as:

Turbulent kinetic energy

K =
3

32

√

π

2
c0

Turbulence energy dissipation rate

ε =
15

16

√

π

2
π2νc0k̄

2
0

Longitudinal integral length scale

Lp =
1√

2πk̄0
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Taylor length scale

λ2 =
1

2π2k̄2
0

Kolmogorov length scale

η =

[

ν2

15
16

√

π
2 π2c0k̄2

0

]1/4

The relevant theoretical background is described in detail by Batchelor [16]. For a given spectrum
function, the Orszag–Rogallo method uses a random number generator to produce a single realisation of
a three–dimensional turbulent velocity field in Fourier space. A three–dimensional parallel inverse Fourier
transform then provides the required velocity field in physical space. Different statistical realisations of
the same velocity field may be obtained by changing the integer seed provided as input to the random
number generator. Some further details of the parallel inverse Fourier transform are provided in section
3.4 and a more detailed description of the turbulence initialisation procedure is provided in a separate
report [17].

2.6.2 Thermochemical Initial Conditions

As well as the velocity field it is necessary also to specify the scalar field. This requires two thermodynamic
variables (e.g., P and T ), together with a set of composition variables (e.g., Yα, α = 1, N − 1) to be
specified at every point in the domain. This is done most conveniently by means of a subroutine named
FLAMIN which is called during start–up, and which provides the flexibility to specify any required problem
configuration by coding it in FORTRAN.

A common example of an initial thermochemical field is a laminar premixed flame solution. A straight-
forward approach to the initialisation of a one–dimensional laminar premixed flame is to use an error–
function profile for an arbitrary reaction progress variable c:

c(x; t = 0) =
1

2

[

1 + erf

(

x − x0

δ

)]

(96)

where x is the coordinate normal to the flame, x0 is the location of the centre of the profile and δ is the
thickness. The mass fractions of the major species may be computed directly from the progress variable
using:

Yα(x; t = 0) = Yα,R + c(x) (Yα,P − Yα,R) (97)

where the subscripts R and P denote the limiting values in the reactants and products respectively. The
initial temperature may be specified using the same approach, and the initial density follows under the
assumption of constant thermochemical pressure. The initial velocity may be computed by assuming
constant mass flux through the flame. If required, initial profiles of minor species may be specified using
a Gaussian function. The procedure as outlined is often sufficient to allow a laminar flame solution
to develop fairly rapidly, even when employing a detailed chemical reaction mechanism. The resulting
one–dimensional solution may be used subsequently to initialise a three–dimensional turbulent flame
simulation.
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3 Numerical Formulation

The governing equations are solved numerically using high–order methods to ensure the high accuracy
required for DNS. The set of differential equations (1–4) expressed in conservative form is first expanded
out to expose the derivatives of all quantities of interest. The continuity equation becomes:

∂

∂t
ρ = − ∂

∂x
ρu − ∂

∂y
ρv − ∂

∂z
ρw, (98)

In the remaining conservation equations, a skew-symmetric form is used for the convective terms in order
to minimise the spatial coherence of the discretisation error [18]. The remaining terms are expanded out
in derivatives of single quantities. The Navier–Stokes equation for the x–component of momentum is
written as:

∂

∂t
ρu = − 1

2

(

∂

∂x
ρuu +

∂

∂y
ρvu +

∂

∂z
ρwu

)

− 1

2

(

ρu
∂u

∂x
+ ρv

∂u

∂y
+ ρw

∂u

∂z

)

− 1

2
u

(

∂

∂x
ρu +

∂

∂y
ρv +

∂

∂z
ρw

)

− ∂p

∂x

+ µ

[

4

3

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂x2
+

1

3

(

∂2v

∂x∂y
+

∂2w

∂x∂z

)]

+

[

4

3

∂u

∂x
− 2

3

(

∂v

∂y
+

∂w

∂z

)]

∂µ

∂x
+

(

∂u

∂y
+

∂v

∂x

)

∂µ

∂y
+

(

∂u

∂z
+

∂w

∂x

)

∂µ

∂z
(99)

The y–momentum equation is:

∂

∂t
ρv = − 1

2

(

∂

∂x
ρuv +

∂

∂y
ρvv +

∂

∂z
ρwv

)

− 1

2

(

ρu
∂v

∂x
+ ρv

∂v

∂y
+ ρw

∂v

∂z

)

− 1

2
v

(

∂

∂x
ρu +

∂

∂y
ρv +

∂

∂z
ρw

)

− ∂p

∂y

+ µ

[

4

3

∂2v

∂y2
+

∂2v

∂x2
+

∂2v

∂z2
+

1

3

(

∂2u

∂y∂x
+

∂2w

∂y∂z

)]

+

[

4

3

∂v

∂y
− 2

3

(

∂u

∂x
+

∂w

∂z

)]

∂µ

∂y
+

(

∂u

∂y
+

∂v

∂x

)

∂µ

∂x
+

(

∂v

∂z
+

∂w

∂y

)

∂µ

∂z
(100)

while the z–momentum equation is:

∂

∂t
ρw = − 1

2

(

∂

∂x
ρuw +

∂

∂y
ρvw +

∂

∂z
ρww

)

− 1

2

(

ρu
∂w

∂x
+ ρv

∂w

∂y
+ ρw

∂w

∂z

)

− 1

2
w

(

∂

∂x
ρu +

∂

∂y
ρv +

∂

∂z
ρw

)

− ∂p

∂z

+ µ

[

4

3

∂2w

∂z2
+

∂2w

∂x2
+

∂2w

∂y2
+

1

3

(

∂2u

∂z∂x
+

∂2v

∂z∂y

)]

+

[

4

3

∂w

∂z
− 2

3

(

∂u

∂x
+

∂v

∂y

)]

∂µ

∂z
+

(

∂u

∂z
+

∂w

∂x

)

∂µ

∂x
+

(

∂v

∂z
+

∂w

∂y

)

∂µ

∂y
(101)

18



The energy equation is treated in the same manner:

∂

∂t
ρE = − 1

2

(

∂

∂x
ρuE +

∂

∂y
ρvE +

∂

∂z
ρwE

)

− 1

2

(

ρu
∂E

∂x
+ ρv

∂E

∂y
+ ρw

∂E

∂z

)

− 1

2
E

(

∂

∂x
ρu +

∂

∂y
ρv +

∂

∂z
ρw

)

− p

(

∂u

∂x
+

∂v

∂y
+

∂w

∂z

)

− u
∂p

∂x
− v

∂p

∂y
− w

∂p

∂z

+ uµ

[

4

3

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂x2
+

1

3

(

∂2v

∂x∂y
+

∂2w

∂x∂z

)]

+ u

[

4

3

∂u

∂x
− 2

3

(

∂v

∂y
+

∂w

∂z

)]

∂µ

∂x
+ u

(

∂u

∂y
+

∂v

∂x

)

∂µ

∂y
+ u

(

∂u

∂z
+

∂w

∂x

)

∂µ

∂z

+ vµ

[

4

3

∂2v

∂y2
+

∂2v

∂x2
+

∂2v

∂z2
+

1

3

(

∂2u

∂y∂x
+

∂2w

∂y∂z

)]

+ v

[

4

3

∂v

∂y
− 2

3

(

∂u

∂x
+

∂w

∂z

)]

∂µ

∂y
+ v

(

∂u

∂y
+

∂v

∂x

)

∂µ

∂x
+ v

(

∂v

∂z
+

∂w

∂y

)

∂µ

∂z

+ wµ

[

4

3

∂2w

∂z2
+

∂2w

∂x2
+

∂2w

∂y2
+

1

3

(

∂2u

∂z∂x
+

∂2v

∂z∂y

)]

+ w
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Finally, the conservation equation for the mass fraction of species α becomes:

∂

∂t
ρYα = − 1

2

(

∂

∂x
ρuYα +

∂

∂y
ρvYα +

∂

∂z
ρwYα

)

− 1

2

(

ρu
∂Yα

∂x
+ ρv

∂Yα

∂y
+ ρw

∂Yα

∂z

)

− 1

2
Yα

(

∂

∂x
ρu +

∂

∂y
ρv +

∂

∂z
ρw

)

+ wα

+ ρDα

(

∂2Yα

∂x2
+

∂2Yα

∂y2
+

∂2Yα

∂z2

)

+
∂Yα

∂x

∂

∂x
ρDα +

∂Yα

∂y

∂

∂y
ρDα +

∂Yα

∂z

∂

∂z
ρDα (103)

where the chemical reaction rate wα is given by 13.

3.1 Spatial Discretisation

The computational domain is taken to be a cuboid of size (Lx, Ly, Lz), and is discretised in space using a
structured Cartesian mesh (see Figure 1). The mesh contains (Nx, Ny, Nz) points in each direction with
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uniform spacings given by

δx =
Lx

Nx − 1
; δy =

Ly

Ny − 1
; δz =

Lz

Nz − 1
. (104)
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Figure 1: The computational domain.

Each of the spatial derivatives in the conservation equations is evaluated at each mesh point in each
direction using a high–order explicit centred finite difference operator. For the first derivatives, the
difference formula for any quantity f at a general interior mesh point i is:

f ′

i =

M/2
∑

m=1

a(M)
m

fi+m − fi−m

2mh
(105)

where M is the order of the scheme whose coefficients are denoted by a
(M)
m , and h ∈ {δx, δy, δz} is the

mesh spacing in the required direction.

ii−1i−5 i−4 i−3 i−2 i+1 i+2 i+3 i+4 i+5

Figure 2: Interior–point stencil for the 10th order finite–difference scheme.

A tenth–order centred scheme (i.e. M = 10), requiring a stencil of eleven points in total (see Figure 2),
is used for all interior points that are five or more points away from a non–periodic boundary. The order
of the centred scheme is reduced as the boundary is approached (see Figure 3). At the fourth point from
the boundary, the scheme is eighth order. At the third point it is sixth order and at the second point it
is fourth order. Coefficients for all of these centred first derivative schemes are given in Table 1.

At the first interior point a fourth–order (M = 4) skewed scheme (denoted by S) is used. For a
boundary located at i = 1 the difference formula for the point i = 2 is:

f ′

i = aM,S
1

fi − fi+1

h
+

M
∑

m=2

a(M,S)
m

fi+m − fi+1

(m − 1)h
(106)
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m 1 2 3 4 5

a
(4)
m 4/3 -1/3

a
(6)
m 3/2 -3/5 1/10

a
(8)
m 8/5 -4/5 8/35 -1/35

a
(10)
m 5/3 -20/21 5/14 -5/63 1/126

Table 1: Difference coefficients for the centred first–derivative schemes.

At the boundary point, a fourth-order (M = 4) one–sided scheme (denoted by O) is used according to
the difference formula:

f ′

i =

M
∑

m=1

a(M,O)
m

fi+m − fi

mh
. (107)

Both of these schemes are also used for a boundary located at i ∈ {Nx, Ny, Nz} after a straightforward
reflection of coordinates.

6

centredcentred centred centred
4th 4th 6th 8th
skew

4th
one−sided

10th
centred

2 3 4 51

Figure 3: Boundary stencil for 4th to 10th order finite–difference schemes.

m 1 2 3 4

a
(4,S)
m -1/4 3/2 -1/2 1/12

a
(4,O)
m 4 -3 4/3 -1/4

Table 2: Difference coefficients for the skewed and one–sided first–derivative boundary schemes.

For the second derivatives, the difference formula at a general interior mesh point is

f ′′

i =

M/2
∑

m=1

b(M)
m

fi+m − 2fi + fi−m

[mh]2
(108)

where the coefficients of the second–derivative scheme are denoted by b
(M)
m . A tenth–order centred scheme

is used for interior points five or more points distant from non–periodic boundaries, and reduced–order
centred schemes are used in the same manner as for the first derivatives as the boundary is approached. It
is interesting to note that for the second derivative centred schemes the difference coefficients are identical

to those for the first derivative centred schemes, i.e. b
(M)
m = a

(M)
m . At the first interior point away from

the boundary the skewed fourth–order second–derivative scheme is given by

f ′′

i = b
(M,S)
1

fi − fi+1

h2
+

M+1
∑

m=2

b(M,S)
m

fi+m − fi+1

[(m − 1)h]2
(109)

where M = 4 and i = 2. At the boundary point the one–sided second–derivative scheme is

f ′′

i =
M+1
∑

m=1

b(M,O)
m

fi+m − fi

[mh]2
(110)
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where M = 4 and i = 1. Again, both of these schemes are also used for i ∈ {Nx, Ny, Nz} after reflection
of coordinates.

m 1 2 3 4 5

b
(4,S)
m 5/6 -1/3 7/6 -1/2 1/12

b
(4,O)
m -77/6 107/6 -13 61/12 -5/6

Table 3: Difference coefficients for the skewed and one–sided second–derivative boundary schemes.

The second cross–derivatives are evaluated using a compatible set of schemes. For a general interior point
(i, j) the difference formula is

f ′′

i,j =

M/2
∑

m=1

c(M)
m

fi+m,j+m − fi+m,j−m − fi−m,j+m + fi−m,j−m

4m2h1h2
(111)

where the coefficients are denoted by c
(M)
m and the mesh spacings are h1, h2 ∈ {δx, δy, δz}. A tenth–

order scheme is used for interior points at least five points distant from the boundary in either of the
two relevant directions, As a non–periodic boundary is approached in either direction, the order of the
scheme is reduced as for the first and second derivatives. The difference coefficients for the centred second
cross–derivative schemes are identical to those for the centred first derivative schemes, i.e. c

(M)
m = a

(M)
m .

Figure 4: Bottom–left corner of the mesh for second cross–derivative evaluation. Points requiring special
treatment are indicated.

The mesh in the vicinity of a bottom–right non-periodic boundary corner is shown in Figure 4. The point
at the top right indicated by a filled circle is the closest point to the corner at which the full 10th–order
centred cross–derivative scheme can be applied. Close to non-periodic boundaries there are five special
cases as indicated in the Figure:
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1. For a corner point (filled square), a doubly one–sided fourth order scheme is used which evaluates
the first derivative of the first derivative by combining two instances of (107), one for each direction.

2. For a point on the boundary adjacent to a corner (filled triangles), a mixed one–sided/skewed
fourth–order scheme is used combining instances of (106) and (107);

3. For an interior point located one point away from a corner in both directions (open square), a
doubly–skewed fourth–order scheme is used which combines two instances of (106);

4. For an interior point located one point away from the boundary in one direction but two or more
points away from the boundary in the other direction (open inverted and left–facing triangles), a
mixed skewed/standard fourth order scheme is used combining instances of (105) and (106);

5. For a boundary point located two or more points away from the boundary in the other direction
(open upright and right–facing triangles), a mixed one–sided/standard fourth order scheme is used
which combines instances of (105) and (107).

In all of the special cases, the appropriate combined differencing scheme is applied to boundaries on all
sides after suitable coordinate reflections.

3.2 Parallel Domain Decomposition

Parallel computation is facilitated using a simple domain decomposition approach. The global compu-
tational domain is decomposed into cuboidal sub–domains which are each assigned to a CPU core. The
total number of cores required is P = PxPyPz where Px, Py and Pz are the numbers of cores assigned to
the x, y and z directions respectively. The cores are ranked from p = 0 to p = P − 1, and are also given
Cartesian indices (px, py, pz) ranging in x − y − z order from (1, 1, 1) to (Px, Px.Pz). Hence

p = (px − 1) + (py − 1)Px + (pz − 1)PxPy (112)

Figure 5: Example of parallel domain decomposition.

The domain decomposition is carried out by dividing the number of mesh points on each side of the
global domain by the number of cores assigned to that direction. Hence the number of points allocated

to the core with rank p is given by (n
(p)
x , n

(p)
y , n

(p)
z ) where n

(p)
x = Nx/Px and similarly for the y and z

directions. Load–balancing is achieved by ensuring that the same number of mesh points is allocated
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to each sub–domain. Where this is not possible, for example due to Nx not being divisible by Px, an
integer division is carried out in each direction and the remainder is allocated to the first–indexed core in
that direction. Figure 5 shows an example of a domain decomposition with Px = 4, Py = 2, Pz = 4 and
equal sub–domains. Communication between adjacent sub–domains is done using a layer of halo cells on
the surface of each sub–domain. Since the interior tenth–order differencing stencil requires five points on
each side of the central point (see Figure 2), the halo layer is five points thick. For the scalar quantities,
a halo layer is required only on each face of each sub–domain. For the velocity components, the need to
evaluate second cross–derivatives means that the halo layer must include the edges and corners also.

Figure 6: Full halo layer on the surface of a parallel sub–domain.

For a sub–domain of size nxnynz and a halo layer thickness h, the number of points in the augmented
sub–domain illustrated in Figure 6 is given by

(nx + 2h)(ny + 2h)(nz + 2h) = nxnynz + 2h (nxny + nxnz + nynz) + 4h2 (nx + ny + nz) + 8h3 (113)

The terms on the right–hand side correspond to the number of points in the original sub–domain, the
number of points in the halos attached to each face of the original sub–domain, the number of points in
the halo strips along each edge, and finally the number of points in the eight corners of the halo. The
fractional increase in the number of points compared to the original sub–domein is given by the expression

(nx + 2h)(ny + 2h)(nz + 2h)

nxnynz
− 1 =

2h

nx
+

2h

ny
+

2h

nz
+

4h2

nxny
+

4h2

nxnz
+

4h2

nynz
+

8h3

nxnynz
(114)

Since in general h << nx,y,z, it is clear that the computational overhead associated with the halo
is dominated by the first three terms on the right–hand side. The lowest overhead is obtained when
nx = ny = nz = n, i.e. when the surface–to–volume ratio of the sub–domain is at a minimum. Parallel
communication is implemented using MPI.

3.3 Time Stepping

Time advancement of the solution is carried out using a low–storage explicit Runge–Kutta method with
adaptive time step control [5]. The governing equations (1)–(4) are written as

∂U

∂t
= R(U, t) (115)
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where U is the vector of conserved variables given by U = {ρ, ρu, ρv, ρw, ρE, ρYα}T and R is the right–
hand side vector containing all other terms in the equations. Clearly R depends on U and may also
depend explicitly on time, for example through source terms or boundary conditions. The general s–
stage explicit Runge–Kutta scheme may be stated as:

U(i) = U(n) + δt

i−1
∑

j=1

aijR
(j)

U(n+1) = U(n) + δt

s
∑

j=1

bjR
(j)

t(i) = t(n) + ciδt

Û(n+1) = U(n) + δt
s

∑

j=1

b̂jR
(j) (116)

where R(i) = R(U(i), t(i)) and the last line denotes the lower–order embedded scheme used to provide
error estimates for the adaptive time–step controller. Memory requirements are minimised by using a
two–register scheme which requires the storage of only U(i) and R(i) at each stage. In practice it is
necessary also to store Û(i) and to provide some temporary storage for intermediate data required in the
evaluation of R(i). The order of the scheme is determined by constraints on the coefficients aij , bi and

ci while the order of the embedded scheme is determined using the coefficients b̂i in place of bi. Several
schemes were assessed, and a five–stage fourth–order two–register method with a third–order embedded
scheme was chosen. This scheme is denoted RK4(3)5[2R+]C in the classification of Kennedy at al. [5]
and its Butcher array is given in Table 4.

0
c2 a21

c3 b1 a32

c4 b1 b2 a43

c5 b1 b2 b3 a54

b1 b2 b3 b4 b5

Table 4: Butcher array for the RK4(3)5[2R+]C explicit Runge–Kutta method.

The numerical values of the coefficients are given in Table 5.

a21
970286171893
4311952581923 b1

1153189308089
22510343858157 b̂1

1016888040809
7410784769900

a32
6584761158862
12103376702013 b2

1772645290293
4653164025191 b̂2

11231460423587
58533540763752

a43
2251764453980
15575788980749 b3

−1672844663538
4480602732383 b̂3

−1563879915014
6823010717585

a54
26877169314380
34165994151039 b4

2114624349019
3568978502595 b̂4

606302364029
971179775848

b5
5198255086312
14908931495163 b̂5

1097981568119
3980877426909

Table 5: Coefficients for the RK4(3)5[2R+]C explicit Runge–Kutta method.
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The two–register Runge–Kutta method is implemented as a sequence of sub–steps. At the beginning of
a new time step, the time is set to t(1) = t(n). The first register contains the initial stage value S(1) = U(n)

while the second register contains the initial solution value U(1) = U(n). The error accumulator E(1) is
set initially to zero. In each sub–step j, the right–hand side function R(j) is evaluated using the current
time and the current solution value U(j). The new value of R(j) is stored in Register 2, overwriting U(j).
Then new values of both S and U are formed by linear combinations of S(j) and R(j) and are stored
in place. At the final step, only S is updated and becomes the new solution at time t(n+1). The error
accumulator is updated at each sub–step as new values of R become available.

Time Register 1 Register 2 Error accumulator

t(1) S(1) U(1) E(1)

S(1) R(1)
(

U(1), t(1)
)

E(1)

S(2) = S(1) + b1δtR
(1) U(2) = S(1) + a21δtR

(1) E(2) = E(1) +
(

b1 − b̂1

)

δtR(1)

t(2) = t(1) + c2δt S(2) R(2)
(

U(2), t(2)
)

E(2)

S(3) = S(2) + b2δtR
(2) U(3) = S(2) + a32δtR

(2) E(3) = E(2) +
(

b2 − b̂2

)

δtR(2)

...
...

...
...

t(5) = t(1) + c5δt S(5) R(5)
(

U(5), t(5)
)

E(5)

S(6) = S(5) + b5δtR
(5) U(5) E(6) = E(5) +

(

b5 − b̂5

)

δtR(5)

t(n+1) = t(5) U(n+1) = S(6) U(n+1) E(n+1) = E(6)

Table 6: Sequence of sub–steps for Runge–Kutta implementation.

The time step is set adaptively using a PID–based controller [5]. The new time step δt(n+1) is given by

δt(n+1) = κδt(n)

(

ε

||E(n+1)||∞

)α ( ||E(n)||∞
ε

)β (

ε

||E(n−1)||∞

)γ

(117)

where E is an error estimate obtained by finding the maximum of the normalised elements of E, ε is a pre–
set error tolerance, κ is a safety factor and α, β and γ are the parameters of the controller. The controller
requires some tuning for optimal performance, but good results have been obtained with ε = 1.0× 10−3,
κ = 0.9, α = 0.49/p, β = 0.34/p and γ = 0.1/p where p = 3 is the order of the embedded method.

3.4 Initial Turbulent Field

A three–dimensional parallel inverse Fourier transform is implemented as part of the turbulence initialisa-
tion procedure. The three–dimensional transform algorithm is based on a superposition of three separate
one–dimensional transforms. During each one–dimensional transform, all of the data along each single
line of the global computational mesh (i.e. a single “pencil” of data) is gathered onto the lowest–ranked
processor on that line. A one–dimensonal inverse Fourier transform is carried out on that processor, and
the pencil of transformed data is scattered back to its original locations. Multiple pencils may be handled
at the same time, in order to reduce parallel communication overheads. The one–dimensional transform
is based on the prime–factor fast Fourier transform algorithm [19] as implemented in a locally–developed
FFT library [20]. In principle the FFT algorithm will handle any length of transform data, although
optimal performance is obtained for lengths which are powers of two or three. The final one–dimensional
transform procedure includes a step which imposes the symmetry conditions necessary to ensure that the
physical–space velocity field is purely real. Further details are given in a separate report [17].
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4 Running the Code

Setting up a DNS run using SENGA2 requires several steps. First the size of the computational domain
and the size parameters for the thermochemical problem must be set by editing the COMMON blocks. Then
the control parameters for the run must be set using the control data file, and the relevant chemical data
must be provided using the chemical data file.

4.1 Common Data

The common data for SENGA2 is contained in the COMMON block file com senga2.h. This file must be
edited in order to set the global and local sizes of the computational domain, the number of processors
and the size of the parallel transfer array.

The section PHYDIM is the first section of the file com senga2.h and an example is shown below:

C PHYDIM-------------------------------------------------------------------

C PHYSICAL DIMENSIONS OF ARRAYS

C -----------------------------

C NOTE: ALL ARRAY SIZES MUST BE CONSISTENT

C NXSIZE MUST BE >= NXGLBL/NXPROC

C NYSIZE MUST BE >= NYGLBL/NYPROC

C NZSIZE MUST BE >= NZGLBL/NZPROC

C WITH AN EXTRA ALLOWANCE FOR ANY REMAINDER

C

C GLOBAL GRID SIZE

INTEGER NXGLBL,NYGLBL,NZGLBL

PARAMETER(NXGLBL=64, NYGLBL=64, NZGLBL=64)

INTEGER NGZMAX

C SET NGZMAX=MAX(NXGLBL,NYGLBL,NZGLBL)

PARAMETER(NGZMAX=NXGLBL)

C NUMBER OF PROCESSORS

INTEGER NXPROC,NYPROC,NZPROC

PARAMETER(NXPROC=2, NYPROC=2, NZPROC=2)

INTEGER NPRMAX

C SET NPRMAX=MAX(NXPROC,NYPROC,NZPROC)

PARAMETER(NPRMAX=NYPROC)

C LOCAL GRID SIZE

INTEGER NXSIZE,NYSIZE,NZSIZE

PARAMETER(NXSIZE=32, NYSIZE=32, NZSIZE=32)

INTEGER NSZMAX

C SET NSZMAX=MAX(NXSIZE,NYSIZE,NZSIZE)

PARAMETER(NSZMAX=NZSIZE)

C SIZE OF HALO

INTEGER NHALOX,NHALOY,NHALOZ

PARAMETER(NHALOX=5,NHALOY=5,NHALOZ=5)

C SIZE OF PARALLEL TRANSFER ARRAY

C NPARAY MUST BE >= MAX(NHALOX,NHALOY,NHALOZ)

C *MAX((NXSIZE+2*NHALOX)*(NYSIZE+2*NHALOY),

C (NXSIZE+2*NHALOX)*(NZSIZE+2*NHALOZ),
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C (NYSIZE+2*NHALOY)*(NZSIZE+2*NHALOZ))

C AND ALSO LARGE ENOUGH FOR PARALLEL BROADCAST OF CHEMICAL DATA

C AND ALSO LARGE ENOUGH FOR PARALLEL TRANSFER OF INITIAL TURBULENCE DATA

INTEGER NPARAY

PARAMETER(NPARAY=8820)

.

.

.

C PHYDIM-------------------------------------------------------------------

Here, the parameters NXGLBL, NYGLBL and NZGLBL must be set to define the global size of the computa-
tional domain in terms of the number of grid points required in the x, y and z directions respectively.
These must be the exact global domain sizes required. The parameter NGZMAX must be set equal to the
largest of the three global domain sizes.

It is assumed that the problem will be decomposed over a topologically cubical array of processors.
The parameters NXPROC, NYPROC and NZPROC must be set to define the number of processors to be used
in each direction, and NPRMAX must be set equal to the largest of these.

The parameters NXSIZE, NYSIZE and NZSIZE must be set to define the maximum size of the compu-
tational domain on each processor. The global domain is decomposed by SENGA2 as evenly as possible
between the processors in each direction: thus NXSIZE must be set to a value greater than or equal to
NXGLBL/NXPROC. If NXGLBL is not exactly divisible by NXPROC then the remainder is evenly distributed
between the highest-ranked processors in the x-direction. In that case NXSIZE must be set greater than
or equal to 1 + NXGLBL div NXPROC. Clearly the same procedure must be followed also for the other two
directions in setting NYSIZE and NZSIZE. Then NSZMAX must be set equal to the largest of the three local
domain sizes.

The parameters NHALOX, NHALOY and NHALOZ must be set to define the width of the halo layer of
the computational grid that is passed between adjacent processors in each direction, and the value set
must match the corresponding interior spatial differencing scheme in use. These parameters must be set
even if the problem uses only a single processor. The default values for the standard 10th order interior
differencing scheme are NHALOX=NHALOY=NHALOZ=5.

The parameter NPARAY controls the the size of the parallel transfer array. The value of NPARAY must
be set greater than or equal to the maximum halo size required in each direction, i.e. the maximum of
NHALOX, NHALOY, NHALOZ, multiplied by the maximum of
(NXSIZE+2*NHALOX)*(NYSIZE+2*NHALOY) for the z-direction,
(NXSIZE+2*NHALOX)*(NZSIZE+2*NHALOZ) for the y-direction, and
(NYSIZE+2*NHALOY)*(NZSIZE+2*NHALOZ) for the x-direction.
The value of NPARAY must be greater than or equal to the maximum required to broadcast the control
data and the chemical data during initialisation of the code. This is checked automatically during start-up.

If an initial turbulent field is required, it may be useful to edit the the section IFTURB of the file
com senga2.h which is shown below:

C IFTURB-------------------------------------------------------------------

C DATA FOR INITIAL TURBULENCE FIELD

C NUMBER OF PENCILS

INTEGER NPENMX

PARAMETER(NPENMX=16)

DOUBLE PRECISION FFTROW(2*NGZMAX,3,NPENMX),

+ FTPART(2*NSZMAX,3,NPENMX),

+ FFTINX(2*NGZMAX)
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COMMON/IFTURB/FFTROW,FTPART,FFTINX

C IFTURB-------------------------------------------------------------------

The parameter NPENMX controls the number of FFT pencils (i.e. lines of one-dimensional transform data)
which are transferred between processors in a single batch. The minimum value is NPENMX=1, and any
larger value provides a gain in the speed of inter-processor communication during the generation of the
initial turbulent field at the cost of the memory required to store the transform data.

The section CHEMIC of the file com senga2.h contains the thermochemical data and is shown below:

C CHEMIC-------------------------------------------------------------------

C PARAMETERS

C ==========

C MAX NO OF SPECIES, NO OF STEPS

INTEGER NSPCMX,NSTPMX

PARAMETER(NSPCMX=1, NSTPMX=1)

C THERMODYNAMIC DATA

C MAX NO OF TEMPERATURE INTERVALS, THERMO POLYNOMIAL COEFFICIENTS

INTEGER NTINMX,NCOFMX

PARAMETER(NTINMX=2, NCOFMX=7)

C MAX NO OF TEMPERATURE COEFFICIENTS, DITTO MINUS ONE

INTEGER NCTMAX,NCTMM1

PARAMETER(NCTMAX=5, NCTMM1=NCTMAX-1)

C TEMPERATURE INTERVAL INDEXING

C NTBASE = NUMBER BASE FOR INDEXING:

C MUST BE A POWER OF TWO >= MAX NO OF TEMPERATURE INTERVALS PER SPECIES

C NSPIMX = MAX NO OF SPECIES STORED PER SINGLE (32-BIT) SIGNED INTEGER:

C MUST BE SET EQUAL TO 31 DIV LOG2(NTBASE)

C NINTMX = NO OF INTEGERS REQUIRED PER SPATIAL POINT:

C MUST BE SET EQUAL TO (1 + NSPCMX DIV NSPIMX)

INTEGER NTBASE,NSPIMX,NINTMX

PARAMETER(NTBASE=4, NSPIMX=15, NINTMX=1)

C CHEMICAL RATE DATA

C MAX NO OF THIRD BODIES

INTEGER NBDYMX

PARAMETER(NBDYMX=10)

C MAX SIZE OF STEP SPECIES-LIST, STEP REACTANT-LIST

INTEGER NSSMAX,NRSMAX

PARAMETER(NSSMAX=10, NRSMAX=10)

C MAX NO OF LINDEMANN STEPS

INTEGER NLLMAX

PARAMETER(NLLMAX=10)

C TRANSPORT COEFFICIENTS

DOUBLE PRECISION ALAMDC,RLAMDA,TLAMDA

PARAMETER(ALAMDC=2.58D-5, RLAMDA=7.0D-1, TLAMDA=2.98D2)

DOUBLE PRECISION PRANTL
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PARAMETER(PRANTL=7.0D-1)

C UNIVERSAL GAS CONSTANT

DOUBLE PRECISION RGUNIV

PARAMETER(RGUNIV=8.3142D3)

.

.

.

The parameter NSPCMX sets the maximum number of chemical species while NSTPMX sets the maximum
number of steps in the reaction mechanism. The minimum value for each is 1, and it is expected that both
of these parameters will be set equal to the corresponding values in the chemical data file (see below).
This is checked automatically during startup. A legitimate exception occurs for non-reacting flow, when
NSTPMX=1 and the number of reaction steps is actually equal to zero.

The parameters NTINMX, NCOFMX and NCTMAX control the maximum sizes required to store the ther-
modynamic data for each species expressed in polynomial form (eq. 17). The parameter NTINMX sets
the maximum number of temperature intervals required for any species while NCOFMX sets the maximum
number of coefficients required in each interval. The parameter NCTMAX sets the maximum number of
coefficients required in the polynomial for temperature (eq. 30).

The index of the current temperature interval for each species is stored in SENGA2 in order to avoid
the need for repeated searching and a bit-wise compression algorithm is used to conserve memory. The
parameter NTBASE defines the number base for the compression algorithm and must be set to an integer
value that is a power of two and is greater than or equal to the maximum number of temperature intervals
per species NTINMX. The parameter NSPIMX defines the maximum number of species temperature indices
that can be stored in a single 32-bit signed integer using the number base NTBASE and its value must
be set equal to NSPIMX = 31 DIV LOG2(NTBASE). The parameter NINTMX defines the number of integers
required per spatial point. Clearly the product NSPIMX*NINTMX must be greater than or equal to the
maximum number of species NSPCMX.

Size parameters for the chemical rate data must also be set. The parameter NBDYMX must be set
greater than or equal to the maximum number of distinct third bodies. The parameter NSSMAX must
be set greater than or equal to the maximum number of species involved in any single reaction step.
Similarly, the parameter NRSMAX must be set greater than or equal to the maximum number of reactant
species involved in any single reaction step. The parameter NLLMAX must be set greater than or equal to
the maximum number of reaction steps requiring Lindemann rate data. Note that these parameters are
used only to set array sizes, and actual values for these quantities are set in the chemical data file.

The values of the parameters used to evaluate the transport coefficients according to (eq. 31) are set.
Clearly ALAMDA and RLAMDA represent the multiplicative coefficient and temperature exponent respectively
while TLAMDA is the reference temperature. The mixture Prandtl number in (eq. 32) is set using the
parameter PRANTL.

Finally the value of the universal gas constant is set (in J/kmol K) using the parameter RGUNIV.
When the editing of com senga2.h is complete, all FORTRAN source files for SENGA2 must be recompiled

in order to incorporate the changes into the code.

4.2 Control Data

The control data file cont.dat must be edited to set up the control parameters for the run. The file
format is as shown:

*************************************************

** **

** SENGA2: Run control data file **

** **

*************************************************
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Global domain size (x,y,z) in metres

1.0D-2 1.0D-2 1.0D-2

Global domain size (nx,ny,nz)

64 64 64

No. of processors (x,y,z)

2 2 2

Time step; start step, no of steps, step switch (0=fixed, 1=adaptive)

1.0D-12 1 1000 1

Intervals between dumps, reports, statistics

500 1 500

Cold start switch (0=cold start, 1=restart)

0

Initial turbulence generator

switch (0=off, 1=new, 2=inlet); random seed; spectrum parameters

1 -1 8.51064D0 5.0D0 0.0D0 0.0D0

Flame generator switch (0=off, 1=on)

0

Default initial conditions

pressure, temperature, velocity components u,v,w

1.0D5 3.0D2 3.9D-1 0.0D0 0.0D0

mass fractions

1

1 1.0D0

Global boundary condition types

one per line: x-left; x-right; y-left; y-right; z-left; z-right

(1=periodic; 1a=inlet; 2b=outlet; 3c=wall; a,b,c denotes BC subtype)

(four integer and four real parameters allowed for each)

13 1 0 0 0 3.9D-1 0.0D0 0.0D0 0.0D0

21 0 0 0 0 1.0D5 2.87D0 1.0D-3 0.0D0

1 0 0 0 0 0.0D0 0.0D0 0.0D0 0.0D0

1 0 0 0 0 0.0D0 0.0D0 0.0D0 0.0D0

1 0 0 0 0 0.0D0 0.0D0 0.0D0 0.0D0

1 0 0 0 0 0.0D0 0.0D0 0.0D0 0.0D0

End of file

The first five lines are treated as a header and are read but ignored by the SENGA2 code. The various data
items are then listed in groups, and the format of the control file is fixed to the extent that the number
of lines in each group and the number of data items per line must be preserved.

The global size of the domain in the x, y and z directions must be specified in metres, together with
the global size of the domain in terms of the number of grid points in each direction and the number
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of processors in each direction. The values for global grid size and number of processors must be set to
match those already specified in com senga2.h, and this is checked by SENGA2 during initialisation. Note
that the processors are ranked from 0 such that the rank index increases by counting along the x, y and
z directions in that order.

The initial time step must be set (in seconds), together with the index of the first time step and the
required number of time steps for the run. A switch must be set to control whether a fixed time step
(switch=0) or adaptive time-stepping (switch=1) is required. The number of time steps between dumps
must be set. A restart file is written for each processor at the start of a run, and a further restart file
is dumped for each processor after the specified number of time steps. Throughout the remainder of the
run. In order to help guard against loss of data, two restart files are kept for each processor and the older
file of the two is overwritten at each dump. The restart file names conform to the pattern dmpiXXXY.dat

where tt XXX is the rank index of the corresponding processor (starting from 000) and Y is the restart
file index which is either 0 or 1. The latest dump may be contained in either restart file and alternates
between the two. The number of time steps between updates to the report file and the statistics file must
also be set. A single report file and a single statistics file are each created at the start of the run by the
lowest-ranked processor. Each is updated after the specified number of time steps.

Initial conditions for the run must be set. The cold start switch must be set to 0 for a cold start, in which
the run is initialised from scratch using specified initial data. Alternatively, the cold start switch must
be set to 1 for a restart, using data from a previous dump. A restart file must exist for each processor,
and the restart file names must conform to the pattern dmpiXXXY.dat where tt XXX is the rank index of
the corresponding processor and Y is the restart file index. It is expected that Y will be set to 0 for a restart.

The initial turbulence generator switch must be set to 0 if no initial turbulent field is to be generated, or
set to 1 if a fresh initial turbulent field is to be generated. If the switch is set to 1 then the random seed
must also be set in order to initialise the random number generator. If the (integer) value of the random
seed is set to be non-negative, the value set is added to the rank of each processor in order to produce
a different random seed for each processor. This ensures that there is no repetition of the same random
sequence on each processor. Conversely, if the value of the random seed is set to be a negative integer,
the value is used globally in order to ensure that the same global initial turbulent field is generated for
a given global grid size irrespective of the number of processors in use. Up to four parameters may
be set in order to control the initial turbulence spectrum function defined in subroutine ESPECT within
SENGA2. The default spectrum function is the Batchelor–Townsend spectrum [15] which is described in
section 2.6.1 and which requires the use of only the first two parameters: these control the total amount
of turbulence kinetic energy and the wavenumber at which the spectrum function has its peak. If the
initial turbulence generator switch is set to 2, then a previously–generated field of frozen inlet turbulence
is copied into the domain. This facility exists to ensure continuity of the turbulent field across the inlet
boundary in cases where a turbulent inflow is specified.

The initial flame generator switch must be set to 1 if an initial scalar field is to be specified, or set to 0 if
not. This switch controls whether or not the subroutine FLAMIN is called within SENGA2. This subroutine
is designed to allow for the specification of an initial scalar field of arbitrary complexity.

Default initial conditions must be set for each variable. Pressure, temperature and the three velocity
components must be set using SI units. The total number of species must be set and must correspond
to the number of species specified in com senga2.h. This is checked by SENGA2 during startup. For each
species an index number and a value for its initial mass fraction must be set. Each index number must
correspond to the species number specified in the chemical data file chem.dat as described below. The
total of all mass fractions must be equal to unity, and this is checked by SENGA2 during startup.
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Boundary condition types must be specified for the global domain. This is done using an indexing system,
and up to four real and four integer parameters may be set for each boundary condition subtype.

Periodic boundary conditions are specified using an index value of 1. Both of the corresponding periodic
faces of the domain must have this index value and this is checked during startup.

Inlet boundaries are specified using an index value of 1a, where a denotes the inlet boundary condition
subtype. Three inlet boundary condition subtypes are implemented:

11 Subsonic non-relecting laminar inflow
This condition requires no additional parameters to be set.

12 Subsonic reflecting turbulent inflow with specified temperature
By default the inlet temperature is set to the same value as specified for the default initial temperature.

13 Subsonic reflecting turbulent inflow with specified density
By default the inlet density is set to the same value as the initial density as computed from the values
specified for the default initial pressure, temperature and species mass fractions.

For inlet boundary condition subtypes 12 and 13, the value of the first integer parameter determines the
nature of the inlet velocity field. A value of 1 specifies a laminar inflow with constant velocity, whereupon
the first real parameter is taken to specify the inflow velocity component normal to the boundary. A value
of 2 specifies a laminar inflow with velocity varying sinusoidally in time, whereupon the first two real
parameters specify the amplitude and period of the oscillation. A value of 3 specifies a turbulent inflow.
In this case, the second integer parameter must be set to 0 for a cold start of the turbulent inlet velocity
field, or to 1 for a restart. The turbulent inflow velocity field is specified using Fourier interpolation
onto a scanning plane passing through a stored cubic box of precomputed frozen turbulence, as described
above. For a cold start, the first three real parameters must be set. In order, these specify the inlet mean
velocity, the difference between the scanning plane velocity and the inlet mean velocity, and the initial
scanning plane location as a distance (in metres) from the downstream end of the stored box. An input
file is required for each processor. The cold start input filename has the form tcxlXXX.dat where XXX

is the rank index of the corresponding processor. The file has the same format as a SENGA2 dump file,
i.e a FORTRAN unformatted file containing all of the variables required for a full restart of the code. For
an inlet cold start only the velocity field data is extracted from the file. The intention is that the inlet
velocity field would be generated from a previous run of SENGA2 with appropriate initial conditions and
possibly using periodic boundary conditions. For a restart, the input filename has the form tixlXXX.dat

where XXX is the rank index of the corresponding processor. This file is generated by SENGA2 during an
inlet cold start and subsequently at the same time as each scheduled dump. It is a FORTRAN unformatted
file containing the Fourier coefficients of the three velocity components together with the current values
of the scanning plane location, the scanning velocity and the inlet mean velocity.

Outlet boundaries are specified using an index of 2b, where b denotes the outlet boundary condition
subtype.

21 Subsonic non–reflecting outflow
This condition requires three real parameters to be set. In order, these specify the pressure at infinity,
the relaxation parameter and the nominal boundary Mach number.

Wall boundaries are specified using an index of 3c, where c denotes the wall boundary condition subtype.
The list of boundary condition types as implemented in the code is given below:

31 Adiabatic no-slip wall
This condition requires no additional parameters to be set.

32 Isothermal no-slip wall
This condition requires a single real parameter to be set in order to specify the wall temperature.

This completes the description of the control data file.
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4.3 Chemical Data

The chemical data file chem.datmust be set up to contain the thermodynamic and chemical data required
for the run. The file may be edited directly or it may be generated using the chemical preprocessor PPCHEM
(see below). The file format is as shown:

*****************************

* *

* Output file from ppchem *

* *

*****************************

Species list:

8

1 CH4

2 O2

3 CO2

4 H2O

5 H2

6 H

7 CO

8 N2

Species data:

1.0000E+05

1 1.6000E+01

9.7000E-01

2

3.0000E+02 1.0000E+03 7

7.7874150E-01

1.7476680E-02

-2.7834090E-05

3.0497080E-08

-1.2239307E-11

-9.8252290E+03

1.3722195E+01

1.0000E+03 5.0000E+03 7

1.6834780E+00

1.0237236E-02

-3.8751280E-06

6.7855850E-10

-4.5034230E-14

-1.0080787E+04

9.6233950E+00

.

.

.

8 2.8000E+01

1.0000E+00

2

3.0000E+02 1.0000E+03 7

3.2986770E+00

1.4082404E-03

-3.9632220E-06

5.6415150E-09
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-2.4448540E-12

-1.0208999E+03

3.9503720E+00

1.0000E+03 5.0000E+03 7

2.9266400E+00

1.4879768E-03

-5.6847600E-07

1.0097038E-10

-6.7533510E-15

-9.2279770E+02

5.9805280E+00

Step rate data:

6

1 2.2000E-05 3.0000E+00 3.6600E+07

2 2.0400E+04 1.5000E+00 9.0230E+07

3 2.3000E+12 -8.0000E-01 0.0000E+00

4 2.0000E+05 0.0000E+00 7.0300E+07

5 5.8300E+05 1.5000E+00 1.3474E+08

6 1.5000E+00 0.0000E+00 1.4505E+08

Step species-list:

1 5

1 1 1

1 2 4

1 3 5

1 4 6

1 5 7

.

.

.

6 4

6 1 2

6 2 4

6 3 5

6 4 6

Step reactant-list:

1 4

1 1 1

1 2 4

1 3 6

1 4 6

.

.

.

6 4

6 1 4

6 2 4

6 3 6

6 4 6

Step product-list:

1 5

1 1 5

1 2 5
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1 3 5

1 4 5

1 5 7

.

.

.

6 4

6 1 2

6 2 5

6 3 5

6 4 5

Step reactant coefficient-list:

1 0

2 0

3 0

4 0

5 0

6 0

Step product coefficient-list:

1 0

2 0

3 0

4 0

5 0

6 0

Species delta-list:

1 1 -1.0

1 2 -1.0

1 3 4.0

1 4 -2.0

1 5 1.0

.

.

.

6 1 1.0

6 2 -2.0

6 3 3.0

6 4 -2.0

Third-body list:

1

1 M

Third-body step-list:

1 0

2 0

3 1

4 0

5 0

6 0

Third-body efficiencies:

1 1 1.0000E+00

1 2 1.0000E+00

1 3 1.5000E+00
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1 4 6.5000E+00

1 5 1.0000E+00

1 6 1.0000E+00

1 7 1.0000E+00

1 8 4.0000E-01

Gibbs step-list:

0

Lindemann step-list:

0

Lindemann step rate data:

Troe step-list:

0

Troe step rate data:

SRI step-list:

0

SRI step rate data:

End of file

The example shown is an abbreviated version of the chemical data file for the Peters-Williams 4-step
methane oxidation mechanism [21]. In most cases it is expected that the chemical data file will be gen-
erated using the chemical data preprocessor PPCHEM described below, although some manual editing may
be required also.

The first five lines are treated as a header and are read but ignored by the SENGA2 code. The various
data items are then listed in groups, where the format of each group is fixed and is determined by the
nature of the data involved. Note that not all groups are required for all reaction mechanisms, and in
this case a one-line header appears as a placeholder for the group.

The species list associates an integer identifier with each species involved in the reaction mechanism.
After the one-line header, the first line contains an integer N specifying the number of species in the
list and hence the length of the list. Each subsequent line contains an integer identifier α and a string
representing the species chemical symbol Mα. Each integer identifier must be unique, and each species
string must contain no spaces. The default maximum length of a species string is 10 characters.

The species data group contains the thermodynamic data required for each species. Following the one-line
header the first line specifies the reference pressure in pascals (Pa). There follows a series of data blocks
with one block per species. For each block the first line contains the species integer identifier and the
molar mass of the species in kg/kmol, and the second line specifies the Lewis number for the species.
The next line contains an integer which specifies the number of temperature ranges over which the ther-
modynamic data is defined. The data for each temperature range is specified in a sub-block whose first
line contains two real numbers specifying the lower and upper limits of temperature in degrees Kelvin
(K) and an integer specifying the number of temperature coefficients for that range. The remainder of
the sub-block contains the coefficients arranged one per line. There are as many sub-blocks as there are
temperature ranges for each species, and as many data blocks as there are species in the species list.

The step rate data group contains the Arrhenius rate parameters for each forward step in the reaction
mechanism. The group consists of a one-line header followed by a line containing an integer M specifying
the number of steps in the reaction mechanism. This is followed in turn by one line for each step con-
taining a unique integer identifier m for the step followed by three real numbers specifying the Arrhenius
rate parameters Am, nm and Em, in accordance with eq. 14. For Lindemann, Troe and SRI forms these
values correspond to the rate coefficient k∞.m in the high–pressure limit.
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The step species list provides a compact list of the species involved in each step of the reaction mechanism,
i.e. a species for which either ν′

α,m or ν′′

α,m (or possibly both) takes a non-zero value. Note that third
bodies are not included in this list. The group consists of a one-line header followed by a number of data
blocks, one for each step in the mechanism. Each block begins with a line containing two integer values,
the first being the value of m that uniquely identifies the step and the second specifing the number of
species involved in that step. Subsequent lines in each block contain three integer values of which the
first is a repeat of the step identifier m, the second is an index number applicable only within the current
step, and the third identifies a species using the unique integer identifier α as previously defined in the
species list. There are as many lines in each block as there are species taking part in the step, and there
are as many blocks as there are steps in the mechanism.

The step reactant list provides a compact list of the species involved in each step of the mechanism as
molecular reactant species, i.e. a species for which ν′

α,m takes an integer value greater than zero. Note
that third bodies are not included in the list. The group has the same structure as the step species list,
consisting of a one-line header followed by a number of data blocks, one for each step in the mechanism.
Each block begins with a line containing two integer values, the first being the value of m that uniquely
identifies the step and the second specifing the number of entries in the list for that step. Subsequent
lines in each block contain three integer values of which the first is a repeat of the step identifier m, the
second is an index number applicable only within the current step, and the third uses the unique species
identifier α to identify a reactant species within the current step. If ν′

α,m has an integer value greater
than unity then the entry for species α is repeated to appear a total of ν′

α,m times, each with a unique
index number but with the same species identifer. There are as many lines in each block as required for
the number of species for each step including repeats, and there are as many blocks as there are steps in
the mechanism.

The step product list provides a compact list of the species involved in each step of the mechanism as
molecular product species, i.e. a species for which ν′′

α,m takes an integer value greater than zero. Note
that third bodies are not included. The group has the same structure as the step species list, consisting
of a one-line header followed by a number of data blocks, one for each step in the mechanism. Each block
begins with a line containing two integer values, the first being the value of m that uniquely identifies
the step and the second specifing the number of entries in the list for that step. Subsequent lines in each
block contain three integer values of which the first is a repeat of the step identifier m, the second is an
index number applicable only within the current step, and the third uses the unique species identifier
α to identify a product species within the current step. If ν′′

α,m has an integer value greater than unity
then the entry for species α is repeated to appear a total of ν′′

α,m times each with a unique index number
but with the same species identifer. There are as many lines in each block as required for the number
of species in each step including repeats, and there are as many blocks as there are steps in the mechanism.

The step reactant coefficient list provides a list of the reactant species for which the value of ν′

α,m is
non-zero but is not a positive integer. Note that third bodies are not included. The group has the same
structure as the step species list, consisting of a one-line header followed by a number of data blocks, one
for each step in the mechanism. Each block begins with a line containing two integer values, the first
being the value of m that uniquely identifies the step and the second specifing the number of entries in
the list for that step. Subsequent lines in each block contain three integer values and one real value. The
first integer is a repeat of the step identifier m, the second is an index number applicable only within the
current step, and the third uses the unique species identifier α to identify a reactant species within the
current step. The real value is the value of ν′

α,m for that species within the step. There are as many lines
in each block as required to specify all of the non-zero non-positive-integer values of ν′

α,m for that step,
and there are as many blocks as there are steps in the mechanism.

The step product coefficient list provides a list of the product species for which the value of ν′′

α,m is non-
zero but is not a positive integer. Note that third bodies are not included. The group has the same
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structure as the step species list, consisting of a one-line header followed by a number of data blocks, one
for each step in the mechanism. Each block begins with a line containing two integer values, the first
being the value of m that uniquely identifies the step and the second specifing the number of entries in
the list for that step. Subsequent lines in each block contain three integer values and one real value. The
first integer is a repeat of the step identifier m, the second is an index number applicable only within the
current step, and the third uses the unique species identifier α to identify a product species within the
current step. The real value is the value of ν′′

α,m for that species within the step. There are as many lines
in each block as required to specify all of the non-zero non-positive-integer values of ν′′

α,m for that step,
and there are as many blocks as there are steps in the mechanism.

The step species delta-list contains the value of the difference of stoichiometric coefficients
(

ν′′

α,m − ν′

α,m

)

for each species in each step in the mechanism. Note that third bodies are not included. The group
consists of a one-line header followed by a number of data blocks, one for each step in the mechanism.
Each line in each block contains two integer values and one real value. The first integer is a repeat of
the step identifier m while the second is an index number applicable only within the current step. The
real value is the value of

(

ν′′

α,m − ν′

α,m

)

for that species within the step. There are as many lines in each
block as required for the number of species involved in the step, and there are as many blocks as there
are steps in the mechanism.

The third body list associates an integer identifier with each third body involved in the reaction mecha-
nism. After the one-line header, the first line contains an integer specifying the number of distinct third
bodies required by the mechanism and hence the length of the list. Each subsequent line contains an
integer identifier and a string representing the generic chemical symbol for the corresponding third body.
Each third-body integer identifier must be unique, and each third-body string must contain no spaces.
The default maximum length of a third-body string is 10 characters.

The third-body step-list indicates which steps in the reaction mechanism involve a third body. After the
one-line header, each line contains two integer values. The first integer corresponds to the step number
m. If a step does not involve a third body then the second integer value is set equal to zero. If a step does
involve a third body then the second integer value is the third body identifier for that step, as already
defined in the third body list.

The third-body efficiencies are listed for each third body identified in the third body list. For every third
body there is a data block consisting of a number of lines equal to the number of species N . Each line
contains two integer values and a real value. The first integer is the unique identifier for the third body
as previously specified in the third body list. The second integer is the species number α as previously
specified in the species list, and the real value is the value of the third body efficiency ηα,M as required
by eq. 54.

The Gibbs step–list indicates which steps in the mechanism need to have the backward reaction rate evalu-
ated using the Gibbs function according to eq. 51. The first line contains a single integer value specifying
the number of Gibbs steps. If this number is non-zero, there follows a number of lines equal to the number
of steps in the reaction mechanism. Each line contains two integer values, of which the first is the step
index number m as previously specified in the step species list. If the step requires evaluation of the reac-
tion rate using the Gibbs function then the second integer value is equal to m, otherwise it is equal to zero.

The Lindemann step–list indicates which steps in the mechanism need to have the reaction rate evaluated
using a Lindemann form according to eq. 55. The first line contains a single integer value specifying
the number of Lindemann steps. If this number is non-zero, there follows a number of lines equal to the
number of steps in the reaction mechanism. Each line contains two integer values, of which the first is the
step index number m as previously specified in the step species list. If the step requires evaluation of the
reaction rate using a Lindemann form then the second integer value specifies a unique integer identifier
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for the Lindemann step, otherwise it is equal to zero.

The Lindemann step rate data is listed for each Lindemann step. Each entry consists of an integer iden-
tifier for the Lindemann step together with the real–number values of the four Lindemann parameters
A0,m, n0,m, E0,m and Fm, as described in section 2.4.4. The length of the list is equal to the number of
Lindemann steps as already specified in the Lindemann step list.

The Troe step–list indicates which steps in the mechanism are treated using a Troe form (see eq. 57).
The first line contains a single integer value specifying the number of Troe steps. If this number is non-
zero, there follows a number of lines equal to the number of steps in the reaction mechanism. Each line
contains two integer values, of which the first is the step index number m. If the step is a Troe step then
the second integer value specifies a unique integer identifier for the Troe step, otherwise it is equal to zero.

The Troe step rate data is listed for each Troe step. Each entry consists of a pair of lines, each starting
with an integer identifier for the Troe step. The first line also contains the real–number values of the six
parameters A0,m, n0,m, E0,m, α, T ∗ and T ∗∗ while the second line also contains the six parameters T ∗∗∗,
c1, c2, n1, n2 and d as listed in section 2.4.5. The length of the list is equal to the number of Troe steps.

The SRI step–list indicates which steps in the mechanism are treated using the SRI form (see eq. 60).
The first line contains a single integer value specifying the number of SRI steps. If this number is non-
zero, there follows a number of lines equal to the number of steps in the reaction mechanism. Each line
contains two integer values, of which the first is the step index number m. For each SRI step the second
integer value specifies a unique integer identifier for the SRI step, otherwise it is equal to zero.

The SRI step rate data is listed for each SRI step. Each entry consists of a pair of lines, each starting
with an integer identifier for the SRI step. The first line also contains the real–number values of the four
parameters A0,m, n0,m, E0,m and a while the second line also contains the four parameters b, c, d and e
as listed in section 2.4.6. The length of the list is equal to the number of SRI steps.
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5 Chemistry Pre-Processor PPCHEM

The chemical data file is most easily constructed using a chemistry pre–processor program named PPCHEM.
This program requires two input files: a reaction mechanism file and a thermochemical data file. At start-
up, PPCHEM will prompt for the names of the reaction mechanism file and the thermochemical data file
to be read, and for the name of the chemical data output file to be written. If required, a simple control
file containing these filenames can be constructed and preconnected to the standard input. By default,
reaction mechanism filenames have the extension .mec, thermochemical data filenames have the extension
.thr and chemical data output filenames have the extension .chm. The chemical data output file from
PPCHEM is in the correct format to be read by SENGA2 using the fixed filename chem.dat.
The reaction mechanism file has the following format:

#

# Peters-Williams 4-step methane mechanism

#

# From Peters, N. and Williams, F.A.: Combust.Flame 68, 185-207, 1987.

#

Species list

1 CH4 methane

2 O2 oxygen

3 CO2 carbon dioxide

4 H2O water vapour

5 H2 hydrogen

6 H hydrogen atom

7 CO carbon monoxide

8 N2 nitrogen

END

Third body list

1 M

CO2 1.5

H2O 6.5

N2 0.4

END

Mechanism step list

1 CH4 +2H +H2O =>CO +4H2 2.200E+04 3.0 36.60

2 CO +H2O =>CO2 +H2 2.040E+07 1.5 90.23

3 2H +M =>H2 +M 2.300E+18 -0.8 0.00

4 O2 +3H2 =>2H2O +2H 2.000E+14 0.0 70.30

5 CO2 +H2 =>CO +H2O 5.830E+08 1.5 134.74

6 2H2O +2H =>O2 +3H2 1.500E+09 0.0 145.05

END

Conversion factor list (length, kmols, time, temp, energy)

1.0D-2 1.0D-3 1.0D0 1.0D0 1.0D3

END

End of file

There is a five-line header which is ignored by PPCHEM and which is intended solely for labelling and
comments. This is followed by the species list, the third-body list and the mechanism step list. Each list
begins with a one-line header and is terminated by a line containing the keyword “END” only.

Each line of the species list corresponds to a single species, and contains the species number, the
species symbol and the species name. Each species number must be unique and consecutive, starting at
1. The species symbol has a maximum length of 16 characters, must not contain any spaces, and must
not end with “D” or “E”. The species name has a maximum length of 50 characters, and can contain any
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alphanumeric character including spaces.
The third body list consists of a series of data blocks. Each data block begins with a line containing

the third body number and the third body symbol. The number must be consecutive and unique, and
the symbol must be unique and follow the same rules as for species symbols. The remainder of each data
block consists of a list, with each line containing a species symbol as defined in the species list together
with a real number representing the third body efficiency for that species for that third body. There are
as many data blocks as there are distinct third bodies, and if the reaction mechanism requires no third
body there will be no data blocks.

Each line of the mechanism step list corresponds to one step in the chemical reaction mechanism.
The line begins with a step number which must be unique and consecutive, starting at 1. There follows
the list of reactant species symbols for the step, separated by “+” signs and terminated by the symbol
“==” or “=>”. This is followed by the list of product species symbols for the step separated by “+” signs.
Spaces within the reactant and product species lists are optional and are ignored. All species symbols
must correspond to species symbols or third body symbols as previously declared. The line ends with
three real numbers separated by spaces, and giving the values of A, n and E for the step.

Reaction steps having a Lindemann form are indicated by the symbol “L” at the end of the line. This
line contains the values of A, n and E for the high–pressure rate coefficient k∞. For a Lindemann step
the following line contains four real numbers separated by spaces and giving the value of F followed by
the values of A, n and E for the low–pressure rate coefficient k0.

Reaction steps of Troe form are indicated by the symbol “T” at the end of the line. This line contains
the values of A, n and E for the high–pressure rate coefficient k∞. For a Troe step the following line
contains seven real numbers separated by spaces, giving the values of α, T ∗, T ∗∗ and T ∗∗∗ followed by the
values of A, n and E for the low–pressure rate coefficient k0. This is followed by a further line containing
five real numbers separated by spaces and giving the values of the constants c1, c2, n1, n2 and d.

Reaction steps of SRI form are indicated by the symbol “S” at the end of the line. This line contains
the values of A, n and E for the high–pressure rate coefficient k∞. For each SRI step the following line
contains three real numbers separated by spaces and giving the values of A, n and E for the low–pressure
rate coefficient k0. This is followed by a further line containing five real numbers separated by spaces
and giving the values of the constants a, b, c, d and e.

The format for Lindemann, Troe and SRI steps is illustrated by the following fragment of a (fictitious)
mechanism file:

21 H2O2 +M1 ==OH +OH +M1 1.200E+17 0.0 45500.0 L

21 0.5 2.950E+14 0.0 48400.0

22 H2O2 +OH +M1 ==H2O +HO2 +M1 5.800E+14 0.0 9560.0 T

22 0.5 300.0 400.0 500.0 2.950E+14 0.0 48400.0

22 -0.4 -0.67 0.75 -1.27 0.14

23 H2O2 +OH +M1 ==H2O +HO2 +M1 5.800E+14 0.0 9560.0 S

23 2.950E+14 0.0 48400.0

23 0.9 0.63 0.85 1.0 1.0

Following the end of mechanism step list, there is a conversion factor list. This list specifies the factors
required to convert the values of A, n and E as given in the mechanism step list into SI units, i.e. using
metres, kmols, seconds, degrees Kelvin and Joules. This allows for the fact that reaction mechanism pa-
rameters are often specified using non–SI units, In principle, any units may be used within the mechanism
step list, provided only that the same units are used for every step in the mechanism. The conversion
factor list consists of a header line (which is ignored) followed by a line containing five real numbers
separated by spacess and giving the values of the conversion factors for length, amount of substance,
time, temperature and energy. The file is terminated by a line containing the phrase “End of file”.

5.1 Thermochemical Data

The thermochemical data file has the following format:
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*****************************

* *

* Output file from ppthrm *

* *

*****************************

1.0000E+05

CH4

1.6000E+01

9.7000E-01

2

1 300.00 1000.00 7

7.7874150E-01

1.7476680E-02

-2.7834090E-05

3.0497080E-08

-1.2239307E-11

-9.8252290E+03

1.3722195E+01

2 1000.00 5000.00 7

1.6834780E+00

1.0237236E-02

-3.8751280E-06

6.7855850E-10

-4.5034230E-14

-1.0080787E+04

9.6233950E+00

END

CO

2.8000E+01

1.1000E+00

2

1 300.00 1000.00 7

3.2624510E+00

1.5119409E-03

-3.8817550E-06

5.5819440E-09

-2.4749510E-12

-1.4310539E+04

4.8488970E+00

2 1000.00 5000.00 7

3.0250780E+00

1.4426885E-03

-5.6308270E-07

1.0185813E-10

-6.9109510E-15

-1.4268350E+04

6.1082170E+00

END

END

There is a five-line header which is ignored. This is followed by a value specifying the reference pressure
for the thermodynamic data. There follows a series of data blocks. There must be exactly one data block
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for each species as declared in the mechanism file, but there may be more species and hence more data
blocks than are required by the mechanism. Each data block begins with a line containing only a species
symbol, constructed according to the rules for species symbols. The two subsequent lines each contain a
single real number corresponding respectively to the molar mass and the Lewis number for that species.
The next line contains a single integer corresponding to the number of temperature intervals for which
thermodynamic data is provided for the species in question. There follows a number of data sub-blocks,
one for each temperature interval. Each sub-block has a first line containing an integer, two real numbers
and a second integer. The first integer gives the number of the sub-block, the two real numbers provide
the lower and upper limits of the temperature range for this interval, and the second integer gives the
number of coefficients to follow. The sub-block is completed by that number of lines, each containing
a real number corresponding to a thermodynamic data item. The data block is terminated by a line
containing the keyword “END”, and the file is terminated by an extra line containing the keyword “END”.

5.2 Thermochemical Pre-Processor PPTHRM

The thermochemical data file may be constructed either manually or by computer using data from any
preferred source. A particularly useful data source is the CHEMKIN database. A further preprocessing
program is PPTHRM which reads a CHEMKIN format database file together with a species data file in order
to generate a thermochemical data file for PPCHEM. At startup, PPTHRM will prompt for the names of the
species data file and the CHEMKIN format thermodynamic database file, for the value of the reference
pressure used in the construction of the thermodynamic data, and for the name of the thermochemical
data file to be output. Alternatively, this information can be provided in a control file preconnected to
standard input. The default filename extension for the species data file is .spc, for the thermodynamic
database file it is .src, and for the thermochemical data file it is .thr as previously indicated.

The CHEMKIN format of the database file is given in relevant publications. The format of the species
data file is:

#

# Peters-Williams 4-step methane mechanism

# Molar masses and Lewis numbers

# From Peters, N. and Williams, F.A.: Combust.Flame 68, 185-207, 1987.

#

Species list

1 CH4 16.0 0.97

2 O2 32.0 1.11

3 CO2 44.0 1.39

4 H2O 18.0 0.83

5 H2 2.0 0.30

6 H 1.0 0.18

7 CO 28.0 1.10

8 N2 28.0 1.00

END

End of file

As before, the first five lines are ignored. The rules for the file format and for the format of the species
list are the same as for the species list in the mechanism file, except that each line contains two real
numbers in place of the species name. These numbers correspond to the molar mass and the Lewis
number respectively.
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