

Ghenadie Bulat - Group Leader Combustion Aero

70 years of combustion development for industrial gas turbines in Lincoln

Unrestricted © Siemens 2016

Page 1 16.09.2016

UK Consortium on Turbulent Reacting Flows

Outline

- Introduction
- Lincoln heritage
- Combustion development:
 - Past
 - Present
 - Future trends
- Towards digital factory
- Summary and Conclusions

Introduction

- Lincoln heritage
- Combustion development:
 - Past
 - Present
 - Future trends
- Towards digital factory
- Summary and Conclusions

169 years of history – Milestones

Unrestricted © Siemens 2016

Page 4 16.09.2016

Megatrends – Challenges that transform our world

SIEMENS Ingenuity for life

Digitalization

 By 2020, the digital universe will reach 44 zettabytes – a 10-fold increase from 2013.

Urbanization

By 2050, 70 percent of the world's population will live in cities. (2009: 50 percent)

Demographic change

The earth's population will increase from 7.3 billion people today to 9.6 billion in 2050. Average life expectancy will then be 82 years.

Globalization

Since 2000, the volume of world trade has nearly doubled.

Climate change

In 2013, scientists measured the highest CO_2 concentration in the atmosphere in 800,000 years.

Digitalization – The great paradigm shifter

Physical world

Siemens installed base – 280k connected devices

Virtual world

Insights from 16TD: 01010010100101000perations data per month 1011001010101000 1011001010101000 Autonomous fault recovery CAx 01001011 Traffic management 1001 MES Analytics 010100101 Imaging software Fleet management¹⁰⁰ Smart grids

Image-guided therapy

Collaboration in the cloud PLM Embedded software Collaboration in the cloud PLM Embedded software

01010010100101100101011011010101010

01011001010110110101001010

Unrestricted © Siemens 2016

Page 6 16.09.2016

UK Consortium on Turbulent Reacting Flows

Digitalization– Technologies for growth

Vision 2020 – A customer-oriented setup

Power and Gas	Wind Power and Rene- wables	Energy Manage- ment	Building Techno- logies	Mobility	Digital Factory	Process Industries and Drives	Health- care (separately managed)	Financial Services
Dresser- Rand Former RR	Wabica							
Power Generation Services								

Power Generation		Power Transmission and Distribution	Efficient Energy Application		Imaging & In-vitro Diag- nostics			
Corporate Corporate 30 Core Services		30 Lead Countr	30 Lead Countries					

Unrestricted © Siemens 2016

Page 8 16.09.2016

Acquisitions strengthen Oil & Gas business – Portfolio across entire value creation chain

Unrestricted © Siemens 2016

Page 9 16.09.2016

Our Products Gas Turbines

Page 10 16.09.2016

UK Consortium on Turbulent Reacting Flows

Global presence – Close to customers all over the world

All figures refer to continuing operations. CIS: Commonwealth of Independent States.

Unrestricted © Siemens 2016

Page 11 16.09.2016

Siemens in the UK

Page 12 16.09.2016

UK Consortium on Turbulent Reacting Flows

- Introduction
- Lincoln heritage
- Combustion development:
 - Past
 - Present
 - Future trends
- Towards digital factory
- Summary and Conclusions

Our heritage

In 1946, a team of Sir Frank Whittle's engineers, led by Bob Feilden, came to Lincoln to develop the first industrial gas turbine, using Frank Whittle's jet engine technology.

Developments have continued ever since …

Unrestricted © stemens 2016

Page 14 16.09.2016

UK Consortium on Turbulent Reacting Flows

Our heritage

- 1946 Ruston & Hornsby developed prototype gas turbine
- 1952 Ruston & Hornsby delivered first production gas turbine to Kuwait
- 1968 Ruston & Hornsby acquired by GEC
- 1969 Ruston Gas Turbines Ltd formed
- 1989 GEC ALSTHOM formed
- 1990 European Gas Turbines created by GEC ALSTHOM and GE (USA)
- 1998 ALSTOM Gas Turbines formed as part of ALSTOM
- 1999 ABB ALSTOM POWER formed (GE agreement terminated)
- 2000 ALSTOM acquired ABB's 50% to form ALSTOM Power

2003 – New ownership – Siemens

Siemens Industrial Turbomachinery Ltd.

SIEMENS Ingenuity for life

- Over 60 years global experience in Gas Turbine design, manufacture & support
- Main markets:
 - Oil and Gas
 - Industrial Power
 Generation
 - Gas Turbine Service
- 1,500 in the UK
- 3,500 units sold in over 90 countries
- 1,700 of these are in operation
- Global purchasing network

Ruston Works Gas Turbine Manufacturing

Freeman Road

Parts Warehouse

Feilden House, Teal Park

Service Centre

Firth Road

Research & Development Test

Unrestricted © Siemens 2016

Page 16 16.09.2016

Industrial Small Gas Turbines Range < 15 MW Current Lincoln gas turbine portfolio

Portfolio upgrades/ New Products

SGT-200 / 7 MW, 31.5%

SGT-100 / 5 MW, 32.9%

Unrestricted © Siemens 2016Page 1716.09.2016

SGT-300 / 8 MW, 34.6%

SGT-400 / 15 MW, 36.8%

Technology considerations Gas Turbine Engine Trends

Page 18

16.09.2016

TA **Combustion system, 1952**

UK Consortium on Turbulent Reacting Flows

TB Combustion system, 1970

Unrestricted © Siemens 2016

- ✓ Reverse flow combustion system
- ✓ Easy and quick installation
- ✓ Increased component life

Visual flame monitoring!

Evolution of Combustion Systems From diffusion to premixed flame

SIEMENS Ingenuity for life

- Robust design
- Large footprint
 Unrestricted © Siemens 2016

Page 21 16.09.2016

- Increased efficiency
- Small footprint
- Increased component life

- Increased efficiency
- Increased thermal loading
- Low emissions

UK Consortium on Turbulent Reacting Flows

Evolution of Combustion Systems From diffusion to premixed flame

Trend:

Reduction in air consumption for combustion can cooling, leaner flames & more uniform temperature profiles

Unrestricted © Siemens 2016

Page 22 16.09.2016

UK Consortium on Turbulent Reacting Flows

DLE Combustion System

DLE Combustion System

The well-proven and reliable Dry Low Emission (DLE) combustor offers clean combustion with low emissions over a wide operating range.

The combustor also has the capability to burn a great variety of fuels.

- Six reverse flow tubular chambers
- · Simple robust construction
- · High energy igniter in each combustor
- NO_x emissions: \leq 15 ppmV (corrected to 15 % O₂ dry)

Unrestricted © Siemens 2016

Page 23 16.09.2016

Typical CFD of a DLE combustor

Unrestricted © Siemens 2016

Page 24 16.09.2016

- Introduction
- Lincoln heritage
- Combustion development:
 - Past
 - Present
 - Future trends
- Towards digital factory
- Summary and Conclusions

Combustion Development Approach Component Test Facilities

SIEMENS Ingenuity for life

High Pressure Combustion Rigs

- Allows combustion testing at full engine temperature and pressure
- □ Facility to cover all current product range

Gas Fuel Mixing Facility

- □ Ability to mix fuels to meet full WI range
- □ Covers range 15 65+MJ/m³ WI

Combustion Development Approach Lessons learned - Past

Unrestricted © Siemens 2016

Page 27 16.09.2016

- Introduction
- Lincoln heritage
- Combustion development:
 - Past
 - Present
 - Future trends
- Towards digital factory
- Summary and Conclusions

Integrated Combustion Development Process

Unrestricted © Siemens 2016 Page 29 16.09.2016

Design modelling

- 3d solid modelling
- Integrated design systems
- Fundamental understanding
 - Combustion, chemical kinectics, aerodynamics, heat transfer, lifing and integrity, acoustics
- Advanced modelling methods
 - CFD (RANS, URANS, LES): combustion, heat transfer, …
 - FEA: Creep, LCF, HCF, acoustics
- Advanced experimental methods
 - Low and high pressure rig facilities and engine testing
 - PIV, LIF, chemiluminescence, Raman, emissions, thermal paints...

SIEMENS

Ingenuity for life

Typical Development Process Combustor Design or Enhancement

Page 30 16.09.2016

UK Consortium on Turbulent Reacting Flows

Design Process and Requirements from CFD

Current industrial expectation

- Mixing calculations
- Trend predictions for temperatures
- Flame location
- Transient aerodynamics

Technology targets

- Emissions predictions
- Accurate temperature predictions
- Combustion instabilities
- Liquid fuel combustion

Unrestricted © Siemens 2016

Page 31 16.09.2016

Combustion development Lessons learned - Current

CFD part of the development process -> need to increase accuracy Integrated development approach -> reduced time to market Optimized design concepts

-> increased efficiency & reduced component costs

Reduced number of development tests (as a result of using more CFD)

-> reduced cost and increased production capacity

Unrestricted © Siemens 2016

Page 32 16.09.2016

- Introduction
- Lincoln heritage
- Combustion development:
 - Past
 - Present
 - Future trends
- Towards digital factory
- Summary and Conclusions

Combustion development Future trends

Multi-physics & multi-component design concepts

-> increased product efficiency

-> increased flexibility, reduced cost

CAD to CAE & digital factory Novel manufacturing techniques

Novel design concepts

- -> rapid prototyping & reduced time to market
- -> product competitiveness

- Introduction
- Lincoln heritage
- Combustion development:
 - Past
 - Present
 - Future trends
- Towards digital factory
- Summary and Conclusions

Digitalization – Big data in Lincoln

Physical world

- Data collection from each factory tested engine
- ✓ Additional development datasets from whole engine development tests
- ✓ High quality full package test datasets
- ✓ Remote monitoring and that collection of field engines

SIEMENS Ingenuity for life

Virtual world

- Condition based maintenance recommendations
- Outage optimization and reduction of unscheduled rectification costs through trend and root cause analysis
- Prediction emissions capability (PEMs instead of CEMs)

Computational combustion Increasing prediction accuracy

Unrestricted © Siemens 2016

Page 37 16.09.2016

UK Consortium on Turbulent Reacting Flows

Computational requirements

Always limited by computational resource!

- Traditional concerns over run times for CFD still valid
 - Better models/more detailed geometries
 - Parallel efficiencies, CPU & GPU
- Modern methods (CFD and experimental) produce so much data that new analyses techniques are required

Model development

- The potential of new methods (LES) is being demonstrated at industrial scale
- Comparatively still very computationally expensive to run and analyze
 - Need for an model recommendation as an industry standard

Learning and model development from high end modelling/experiments

- DNS understanding to support combustion models
- Detailed understanding of combustion and aerodynamics at industrial conditions
 - Need of good quality experimental datasets

Understanding and exploiting the ever increasing computational capacity is critical to industry adopting future applications of combustion models

• Well demonstrated in the CFD development over the decades

Unrestricted © Siemens 2016

Page 38 16.09.2016

Academic industrial interaction

UKTRFC benefits:

The forum provides through meetings and workshops an excellent single point for knowledge transfer

✓ Visibility of current work

✓Visibility of new researchers in field

✓ Networking opportunities

- Introduction
- Lincoln heritage
- Combustion development:
 - Past
 - Present
 - Future trends
- Towards digital factory
- Summary and Conclusions

Unrestricted © Siemens 2016

•

Summary

> Combustion is an attractive and evolving field of engineering development

- Significant product enhancements have been achieved due to combustion R&D over last 70 years of gas turbine development
- DLE technology mature and well accepted in the field
 - ✓Lower emissions
 - ✓Increased fuel flexibility
 - ✓ Increased reliability and operability
- Computational requirements for combustion is still high
 - >Need for increase of model accuracy
 - >Need for multi-component/ multi-physics experimental datasets
- Additive manufacturing techniques and digital factory approach will promote the applicability of combustion engineering

Unrestricted © Siemens 2016

Page 41 16.09.2016

Thank you!

Please address all correspondence to:

Siemens Industrial Turbomachinery Ltd **Ruston House** P O Box 1 Waterside South Lincoln LN5 7FD England

© Siemens Industrial Turbomachinery Ltd

No part of this document may be reproduced or transmitted in any form or by any means, including photocopying and recording without the written permission of Siemens Industrial **Turbomachinery Ltd**

Unrestricted © Siemens 2016 Page 42

16.09.2016

SIEMENS Ingenuity for life

Questions?

Unrestricted © Siemens 2016

Page 43 16.09.2016

UK Consortium on Turbulent Reacting Flows