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Introduction

Our objective is to model turbulent reacting flows with particle formation.
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(a) A sooting jet flame [2]. (b) Cloud formation.

(c) BaSO, particles [1]. (d) Coal combustion.



Particle characteristics
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Figure: Polydisperse particles forming within a carrier flow through a pipe mixer.



Fluid and particulate phase

The evolution of the distribution N(v,x,t) can be described by the PBE
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while the fluid phase composition Y (x,t) evolves according to
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> u(x,t),G(Y,v) Velocity field and particle growth rate
x,t), vp(x,1) Diffusivities

$(Y, N,v), w(Y,N) Production/destruction rates

> p(x,t) = p(Y(x,1)) Mixture density



Two main challenges
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(a) PBE and turbulence model (b) Discretization in v-space

Figure: Polydisperse particles forming within a carrier flow.



Turbulence-chemistry interaction
Based on the mass-based number density

N(v,x,t)
p(x,t)

we consider the Joint scalars-number density pdf

fly,ms0,%,8) = (0 (y = Y(x,4)) 6 (n = Ny(v,%,1)))

Ny(v,x,t) =

Its density-weighted counterpart f(y, n;v,X,t) obeys
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Statistically, Eq. (5) is equivalent to the stochastic process
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LES-PBE-PDF framework
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Figure: lllustrating the LES-PBE-PDF model (TE: Transport Equation).



Discretizing particle property space
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Figure: lllustrating the discrete number density fields N;(x,t), i =1,...,n+ 1.



An adaptive PBE discretization

» Construct a coordinate transformation v : (7,x,t) — v.

» Discretize the stochastic field equations on a fixed grid in 7-space.

N(v,x,t) F(r,x,t)

0 - 0

do(7,x,t)
dr
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Figure: lllustrating the effect of a coordinate transformation.



Delft flame Il
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Figure: Schematic representation of the flow domain for the Delft flame Il (Re & 8370).



Instantaneous fields
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Figure: Temperature and stoichiometric mixture fraction as well as soot volume density.



Velocity and temperature in the near-field
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Figure: Comparing mean axial velocity and temperature with measurements.



Radially integrated soot volume fraction

Measurements LES-PBE-PDF
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Figure: Comparing the radially averaged soot volume fraction with measurements.



Sample particle size distributions
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Figure: Instantaneous particle size distributions along the radius at z = 480 mm.



Time measurements

Physical process Average runtime
Scalar convection /diffusion 1.589s
Gas-phase reaction 2.476s
Particle phase reaction 2.411s
Flow field 1.696s
All processes 8.172s

Table: Average runtime for advancing the LES-PBE-PDF model by one time step of
At = 107%s on an Intel Xeon E5-2660 v2 processor.



Concluding remarks
Advantages of the LES-PBE-PDF model:

v

Fully Eulerian solution scheme

» Easy to implement (or to combine with existing software)

v

Physical model distinct from numerical solution scheme

v

Predict entire particle property distribution

v

Accommodate fluid/particle phase kinetics without approximation

Advantages of our explicit adaptive grid approach:
» Easy to implement
» Can be combined with any direct discretization scheme in 7-space

» Can be combined with any time integration scheme

v

Resolves sharp features

v

Converges at an accelerated pace
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