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Introduction

Our objective is to model turbulent reacting flows with particle formation.

(a) A sooting jet flame [2]. (b) Cloud formation.

(c) BaSO4 particles [1]. (d) Coal combustion.



Particle characteristics
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Figure: Polydisperse particles forming within a carrier flow through a pipe mixer.



Fluid and particulate phase

The evolution of the distribution N(v,x, t) can be described by the PBE
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while the fluid phase composition Y(x, t) evolves according to
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where

◮ u(x, t), G(Y, v) Velocity field and particle growth rate

◮ γ(x, t), γp(x, t) Diffusivities

◮ ṡ(Y, N, v), ω̇(Y, N) Production/destruction rates

◮ ρ(x, t) = ρ̂(Y(x, t)) Mixture density



Two main challenges

(a) PBE and turbulence model
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(b) Discretization in v-space

Figure: Polydisperse particles forming within a carrier flow.



Turbulence-chemistry interaction

Based on the mass-based number density

Nρ(v,x, t) ≡
N(v,x, t)

ρ(x, t)
(3)

we consider the Joint scalars-number density pdf

f(y, n; v,x, t) = 〈δ (y −Y(x, t)) δ (n−Nρ(v,x, t))〉 (4)

Its density-weighted counterpart f̃(y, n; v,x, t) obeys
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Statistically, Eq. (5) is equivalent to the stochastic process
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LES-PBE-PDF framework
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Figure: Illustrating the LES-PBE-PDF model (TE: Transport Equation).



Discretizing particle property space
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Figure: Illustrating the discrete number density fields Ni(x, t), i = 1, . . . , n+ 1.



An adaptive PBE discretization

◮ Construct a coordinate transformation v̄ : (τ,x, t) 7→ v.

◮ Discretize the stochastic field equations on a fixed grid in τ -space.
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Figure: Illustrating the effect of a coordinate transformation.



Delft flame III
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Figure: Schematic representation of the flow domain for the Delft flame III (Re ≈ 8370).



Instantaneous fields

Figure: Temperature and stoichiometric mixture fraction as well as soot volume density.



Velocity and temperature in the near-field
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Figure: Comparing mean axial velocity and temperature with measurements.



Radially integrated soot volume fraction
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Figure: Comparing the radially averaged soot volume fraction with measurements.



Sample particle size distributions
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Figure: Instantaneous particle size distributions along the radius at x = 480mm.



Time measurements

Physical process Average runtime

Scalar convection/diffusion 1.589 s
Gas-phase reaction 2.476 s
Particle phase reaction 2.411 s
Flow field 1.696 s

All processes 8.172 s

Table: Average runtime for advancing the LES-PBE-PDF model by one time step of
∆t = 10−6 s on an Intel Xeon E5-2660 v2 processor.



Concluding remarks

Advantages of the LES-PBE-PDF model:

◮ Fully Eulerian solution scheme

◮ Easy to implement (or to combine with existing software)

◮ Physical model distinct from numerical solution scheme

◮ Predict entire particle property distribution

◮ Accommodate fluid/particle phase kinetics without approximation

Advantages of our explicit adaptive grid approach:

◮ Easy to implement

◮ Can be combined with any direct discretization scheme in τ -space

◮ Can be combined with any time integration scheme

◮ Resolves sharp features

◮ Converges at an accelerated pace
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