

Direct Numerical Simulation of Turbulent Lean Premixed H₂/Air Flames at Elevated Pressure

Xujiang Wang, K. H. Luo

Department of Mechanical Engineering, University College London

16/09/2016

Background

□ Numerical method and computational cases

Results and discussion

Conclusions

Background

- There has been considerable interest in lean premixed H₂/air combustion which reduces peak temperature and consequently thermal NOx emission. No significant changes to current combustion facilities.
- It is hard to get detailed information of elevated pressure combustion in experiments. Most of DNS studies of flame structure and propagation are carried out at atmospheric pressure.
- 3D-DNS studies with detailed chemistry at elevated pressures are few and far inbetween. Understanding of combustion characteristics at elevated pressure is insufficient.

□ Study the instantaneous flame structure at different pressure levels

□ Study the flame instability at different pressure levels

Numerical Approach DNS

Navier-Stokes equations and chemical species transport equations are solved with six-order compact finite difference schemes for spatial discretization and low-storage third-order Runge-Kutta time advancing scheme is used for the time advancement.

The Navier-Stokes Characteristics Boundary Conditions (NSCBS) are applied at the inlet / outlet and periodic boundary conditions are imposed in the spanwise and lateral directions.

Numerical Approach DNS

- □ Turbulence was generated in a periodic box, which was then fed into the inlet plane of the main simulation.
- A one-dimensional (1D) laminar flame was generated using detailed chemistry and detailed transport properties to initialize the three-dimensional turbulent flame simulation.
- □ Chemical mechanism is from Li et al.[1], involving 9 species and 21 reactions.

4

Computational Cases

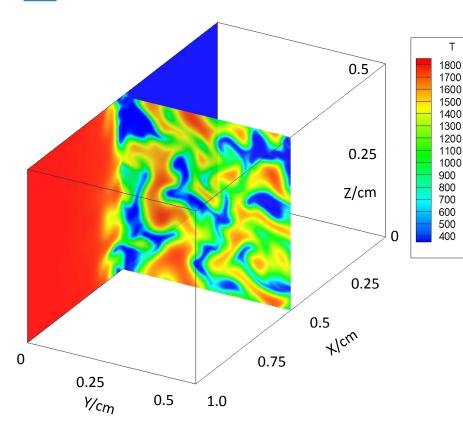


Fig.1 A schematic of computational domain .

Table 1 Key parameters in computational cases

Case	P=1atm	P=2atm	P=5atm
Equivalence ratio	0.6	0.6	0.6
<i>S</i> _L (cm/s)	88.5	69.9	47.9
δ_L (cm)	3.85E-02	1.9E-0.2	8.24E-0.3
<i>u</i> ' (cm/s)	1138	1138	1138
<i>l</i> (cm)	0.0628	0.0628	0.0628
Grid resolution (μm)	10.01	9.77	9.77
Δx/η	0.156	0.309	0.768
Re_T	21	54	181

*Note:

 S_L - laminar flame speed

 δ_{L} - laminar flame thickness

u' - Root-mean-square turbulent fluctuation velocity

I - Integral length scale

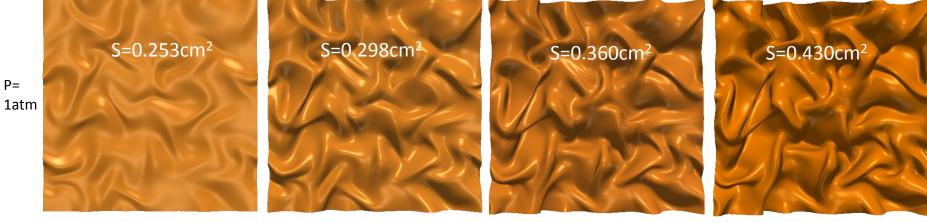
Turbulent Reynolds number $Re_T = \frac{u'l}{\delta_L S_L}$ Kolmogorov length scale $\eta = l \cdot Re_T^{-3/4}$ ⁶

Instantaneous Flame Structure

P=2atm

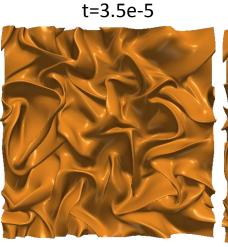
P=5atm

Fig.2 2D snapshots of vorticity field (red lines for progress variable c=0.1-0.9)


Non-dimensional progress variable

 $c = \frac{T - T_u}{T_b - T_u}$

- The three flames are considered within the Thin Reaction zone.
- The flame zone is considered to be bounded by c=0.1 and c=0.9. Small scale turbulent eddies could not enter the reaction zone.
- When P= 5atm, the reaction zone is much thinner than that under atmospheric pressure.



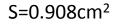
t=5e-6

5

t=5e-6

t=3.5e-5

Fig.3 sequences of flame propagation(iso-surface c=0.5)



Instantaneous Flame Structure

S=0.430cm²

S=0.635cm²

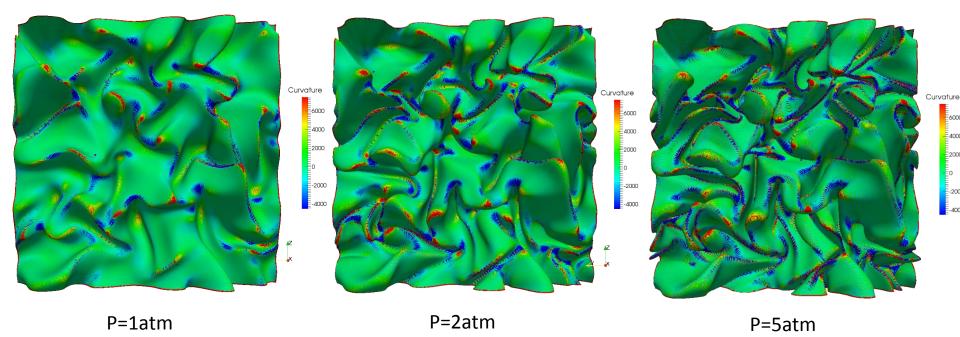
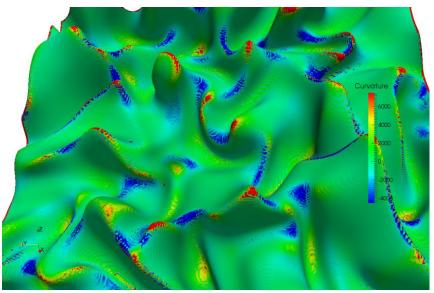
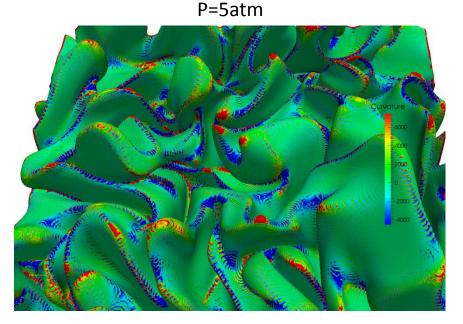
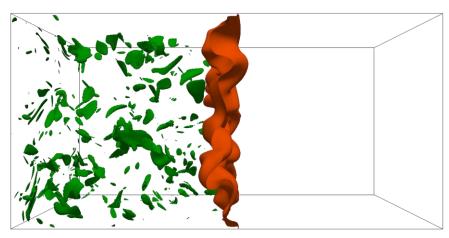



Fig.4 Iso-surfaces of flame front, coloured by curvature (t=5e-5, c=0.5)

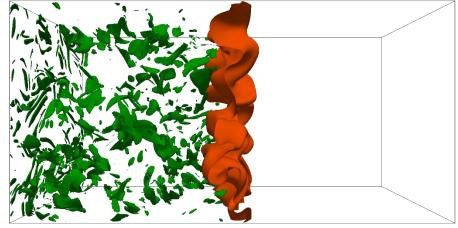
Instantaneous Flame Structure

P=1atm




Fig.5 Details of iso-surfaces

- The three cases are initialized with same turbulence field. The flame surface is wrinkled immediately after initiation of propagation.
- The flames under higher pressure exhibit more small scales structures and as a result flame wrinkling is getting stronger. It is associated with flame instabilities and turbulent levels at elevated pressure.



Influence of turbulence

P=2atm

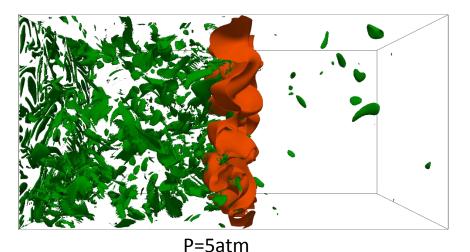
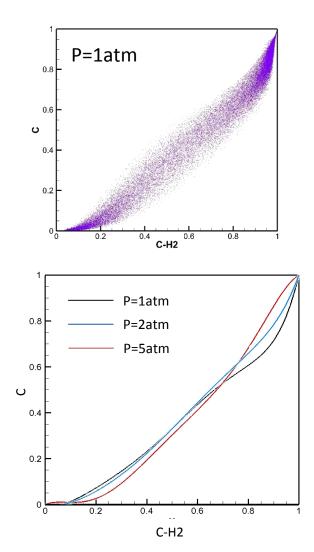
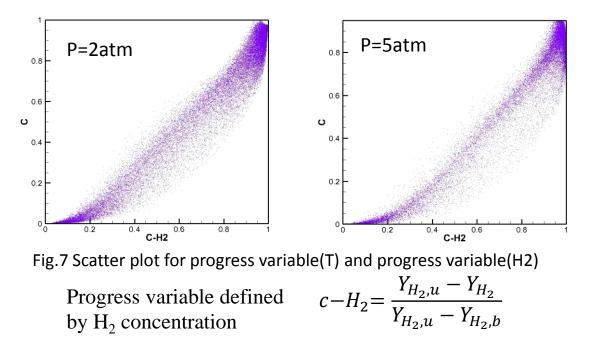


Fig.6 Instaneous vortex structures at different pressures (red surface c=0.5)


$$Q_{-}$$
criterion $Q_{-} = \frac{1}{2} \frac{\partial u_i}{\partial x_j} \frac{\partial u_j}{\partial x_i}$


Under high pressure, the vortex structures tend to be complex and unsteady, which contributes to more small flame cells

Dissusion

□ In preheat zone, the H₂ concentration is lower for the high pressure case. More H₂ diffuses from preheat zone to reaction zone. Differential diffusion is enhanced in this case.

Conclusions and plans

- □ The reaction zone is seriously narrowed at elevated pressure for turbulent lean premixed H_2 /Air combustion.
- □ Under high pressure, there are more small flame structures than low pressure. Flame wrinkling tends to be stronger.
- □ Under high pressure, differential diffusion is enhanced and vortex structures tend to be complex and unsteady.

□ In the future, we will focus on: the influence of differential diffusion and turbulent levels on flame properties at elevated pressure.

Acknowledgement

This work used the ARCHER UK National Supercomputing Service (<u>http://www.archer.ac.uk</u>).

The ARCHER resources were funded under the EPSRC project "High Performance Computing Support for United Kingdom Consortium on Turbulent Reacting Flow (UKCTRF)" (Grant No. EP/K024876/1).

Thank you!