

University of Stuttgart Institut für Technische Verbrennung (ITV)

Nanoparticle Agglomeration – towards scale preserving computations

UKCTRF Annual Meeting Cambridge – 12th - 13th September 2018

> <u>A. Kronenburg</u>, M. Smiljanic, S. Hirschmann, D. Pflüger

Motivation & Outline

Agglomeration

- Importance
 - Environment aerosol formation
 - Water purification
 - Exhaust treatment
 - Spray drying
 - Particle flame synthesis

Agglomeration determines size and size determines properties

Solution with gold nanoparticles (©wikipedia)

optical/magnetic/electrical/mechanical

Motivator: Particle Synthesis

HOT DBP-LADEN JET IN COLD CO-FLOW

Existing PDF-MMC simulations of UCLA experiment (Friedlander)

but very dilute and no agglomeration

PREDICTED M₀ UND PSD

Motivator: Particle Synthesis

ELASTIC LIGHT SCATTERING SIGNAL

Existing PDF-MMC simulations of silica formation

Np [#/m³] 24 4e+20 8e+20 0e+00 22-2220--20 18 -18 10²⁰ 16 16 -14 14 10^{15} 12 ^{z/D} N [#/m³] z/D₁₂ 10 10 10¹⁰ 10⁵ 10⁻¹⁰ 10⁻⁸ 10⁻⁶ 10⁻⁴ R_a [m] r/D

G. Neuber et al., Proc. Combust. Inst, in press (2019)

PREDICTED PSD

Motivation & Outline

Agglomeration models

Motivation

- Turbulence-chemistry interactions
- Turbulence-particle interactions
- Particle-particle interactions
 - Existing models do not usually account for
 - Varying morphology of agglomerate during agglomeration process

 \checkmark

X

- Effects of flow field other than shear
- Collision frequencies for fractals in turbulence
- Outline of talk
 - Some hypotheses about morphology
 - Parameterization of D_f
 - Supercomputing or coarse-graining approach?
 - Comparison between coarse-graining and detailed Langevin dynamics

Collision kernel

• The PBE
$$\frac{\partial n}{\partial t} + \nabla \cdot n \mathbf{u} - \nabla \cdot D \nabla n + \frac{\partial G(v, \mathbf{Y}) n(v)}{\partial v} = S(v, \mathbf{Y}) + \frac{1}{2} \int_{0}^{v} \beta(\tilde{v}, v - \tilde{v}) n(\tilde{v}) n(v - \tilde{v}) d\tilde{v} - \int_{0}^{\infty} \beta(v, \tilde{v}) n(v) n(\tilde{v}) d\tilde{v}$$

 $N = k_f \left(\frac{R_g}{\sigma/2}\right)^{D_f}$

- Collision frequency, β , dependent on aggregate's shape
- Use fractal dimension D_f to characterize shape

$$\beta(v_i, v_j) = \left(\frac{6k_b T}{\rho}\right)^{1/2} \left(\frac{3}{4\pi}\right)^{2/D_f - 1/2} d_{p0}^{2-6/D_f} \left(\frac{1}{v_i} + \frac{1}{v_j}\right)^{1/2} \left(v_i^{1/D_f} + v_j^{1/D_f}\right)^2$$
$$\beta(v_i, v_j) = \frac{2k_b T}{3\mu} \left(\frac{1}{v_i^{1/D_f}} + \frac{1}{v_j^{1/D_f}}\right) \left(v_i^{1/D_f} + v_j^{1/D_f}\right)^2$$

The fractal dimension D_f

IS D_F IMPORTANT?

WHAT IS D_F?

 Hypothesis 1: D_f affected by turbulence.

© Meakin, 1988

Hypothesis 2: D_f is no function of time.

How to determine D_f?

• The motion and dynamics of the Brownian particles are modelled by solving the Langevin equations of motion

$$m_P \ddot{\mathbf{x}}_{\mathbf{i}} = F_D + F_{ext} + BdW$$

 $\dot{\mathbf{x}} = \mathbf{v}(t, x)$

Use ESPreSo

- Molecular dynamics package
- Attractive-repulsive L-J force

$$U_{LJ}^{attractive}(r) = -\frac{A}{6} \left[\ln\left(\frac{r^{2} - \sigma^{2}}{r^{2}}\right) + \frac{\sigma^{2}}{2(r^{2} - \sigma^{2})} + \frac{\sigma^{2}}{2r^{2}} \right]$$

$$U_{LJ}^{repulsive}(r) = -\frac{A\sigma_{LJ}^{6}}{2520r} \left[\sigma^{2} \left(\frac{1}{2(r - \sigma)^{7}} + \frac{1}{2(r + \sigma)^{7}} + \frac{1}{r^{7}}\right) - \frac{\sigma}{3} \left(\frac{1}{(r - \sigma)^{6}} + \frac{1}{(r + \sigma)^{6}}\right) - \frac{1}{15} \left(\frac{2}{r^{5}} - \frac{1}{(r - \sigma)^{5}} + \frac{1}{(r + \sigma)^{5}}\right) \right]$$

$$U(r) = U_{LJ}^{attractive}(r) + U_{LJ}^{repulsive}(r)$$

How to determine D_f?

• connect colliding particles to each other with a single bond

 connection of 2 contacting particles with a single bond, 3rd particle with angle potential and 4th particle with dihedral potential

$$U_{\text{angular-bond}} = k_a \left(\theta - \theta_0\right)^2; k_a = \frac{k_0}{192}; k_0 = \frac{3\pi a^4 E_Y}{4(\sigma/2)^3}$$

Brownian Motion

LANGEVIN DYNAMICS

COMPARISON SIMULATION - EXP

© Tumolva et al., 2010

Computations setup

- Different primary particle sizes: σ =5nm, 20nm, 100nm
- Domain size: 800σ
- Number of particles: N_p=3.2·10⁶
- Volume fraction: $f_v = 0.00625$
- Superposed flow field
- Number of simulations per case: N_s=5
- Run times: 20,000 43,000 CPUh per run to reach t⁰=1500.

	C1	C2	C3	C4	C5	C6	C7	C8	C9
σ [nm]		5			20			100	
$\epsilon [m^2/s^3]$	$4.5 * 10^9$	$1.1 * 10^{11}$	$4.5 * 10^{11}$	$1.1 * 10^8$	$2.7 * 10^9$	$1.1 * 10^{10}$	$6.9 * 10^3$	$1.7 * 10^{5}$	$6.9 * 10^5$
τ_{BM} [s]	$1.1 * 10^{-9}$	$1.1 * 10^{-9}$	$1.1 * 10^{-9}$	$6.8 * 10^{-8}$	$6.8 * 10^{-8}$	$6.8 * 10^{-8}$	$8.6 * 10^{-6}$	$8.6 * 10^{-6}$	$8.6 * 10^{-6}$
τ_{kol} [s]	$1.1 * 10^{-7}$	$2.1 * 10^{-8}$	$1.1 * 10^{-8}$	$6.8 * 10^{-7}$	$1.4 * 10^{-7}$	$6.8 * 10^{-8}$	$8.6 * 10^{-5}$	$1.7 * 10^{-5}$	$8.6 * 10^{-6}$
Kn [-]	46	46	46	11	11	11	2	2	2
Pe [-]	0.1	0.5	1	0.1	0.5	1	0.1	0.5	1

Results: Langevin Dynamics

Temporal evolution of average D_f

OUR WORK

University of Stuttgart

Results: Langevin Dynamics

Attempt modelling

DEPENDENCE OF D_F=D_F(R_G) (NO REAL TIME DEPENDENCE)

MODELLING

Functional dependence

$$D_f(\tilde{R}_g) = f_1 + f_2 = c_1(1 - e^{-c_2\tilde{R}_g^{c_3}}) - c_4(1 - e^{-0.08\tilde{R}_g})$$

Modelling constants

$\operatorname{constant}$	modelling assumption	value of coefficients					
two-function model							
c_1	DLA limit (cluster - particle)	2.5					
c_2	$f_1 + f_2 \stackrel{!}{=} D_f(1)$	-					
c_3	$\frac{\partial D_f}{\partial \tilde{R}_g} \mid_{\tilde{R}_g = 11} = 0$	-					
c_4	DLA limit (cluster-cluster)	0.62					
$D_f(1)$	$a - rac{b}{1 + (cPe)^d + (eKn)^f}$	a=1.25, b=0.25, c=1.5, d=7, e=0.08, f=3					
· · · · · · · · · · · · · · · · · · ·							

• Does not yet help us with assessment of β

Issues

- Moderately expensive
- Scale separation we cannot fully bridge the gap between turbulence scales and particle size
- Statistics poor, especially for large clusters
- Very limited info on collision frequencies

- Need scale preservation and need to get "bigger"
- 1) use brute force or
 2) use coarse graining approach

Scale Preserving Simulations

- What do I mean with scale preserving?
 - Typical particle size: $\sigma = 20 \text{ nm}$
 - Typical Kolmogorov size: η_{Kol} = 2 μ m
 - Turbulent length scale: $I_t > 20 \ \mu m$
 - Domain size: $L > 40 \ \mu m$
 - Solution above (as $L/\sigma=800 < 2000$):
 - rescale DNS turbulence field
 - Cannot keep ratio of η_{Kol}/σ
 - Scaling of gradients (preserve small scale shear)
 - Preserve dissipation

$$\frac{l_0}{t_0} = \text{const}$$
$$\varepsilon = \hat{\varepsilon} \frac{l_0^2}{t_0^3} = \hat{\varepsilon} \frac{u_0^3}{l_0}$$

Large Scale Computations

- 1st strategy make the computations bigger
 - What is do-able?
 - L = 2600 σ
 - $N_p = 110 \cdot 10^6$
 - $t_{end} = 1200 \ t_{LD}^0$
 - Computational time ~ 2 million core hours if computations scale
 - But: computational efficiency is the issue

Load Balancing

- MD simulations on multiple processes:
 - Slowest process determines overall runtime
 - Degrading parallel performance for inhomogeneous particle distributions
 - Indicator: imbalance amongst processes
- Remedy:
 - Change subdomains to balance load

10,000 initially homogeneously distributed Lennard-Jones particles on 8 processors. Graph shows imbalance amongst subdomains.

Load Balancing

 Methodology of partitioning Default: equally sized boxes on grid

SFC-based partitioning: subdomains defined via linearization of the domain

"chain-on-chain partitioning"

University of Stuttgart

Load Balancing

- Repartitioning:
 - Associate a weight with each cell
 - Determine new partition boundaries in 1d -> load of each process is approximate average process load $1/P \sum_{i} w_{i}$ for P processes

Load Balancing

- Results
 - Evaluation of end state of particle agglomeration with 3.2 million particles
 - Runtime of 1,000 MD time steps on 2,400 cores on HazelHen

Weights from left to right:

- (1) Without repartitioning,
- (2) # LJ distance calculations,
- (3) # LJ force pairs
- (4) # particles,
- (5) # bonded interactions.

Issues

- Works on ~ 10,000 cores pretty well
- L=2600 σ and 110M particles \rightarrow larger scales give larger velocities/forces

need to introduce breakage

hope to show results on next conference

Coarse-Graining (CG)

Benefits/Drawbacks

 2nd strategy – coarse graining: Replace agglomerate by single coarsegrained particle

- Benefits
 - Increase number of particles, increase size of aggregates, increase domain size, increase width of turbulence spectrum
- Drawbacks
 - loss of detail, introduce additional characteristics for CG particle, quantification of characteristics requires large number of simulation

Collision probability

- Characteristics of CG particle
 - Mass
 - Drag coefficient
 - Representative size
 - Morphology
 - Collision frequency

 $m_{CG} = i \cdot m_p$ $\gamma_{CG} = 3\pi \mu_f i \sigma_p$ $\sigma_{CG} = d_{max}$ $D_f = \text{const}$ $P_{coll} \text{ is modelled}$

CG particle with d_{max} - not every overlap leads to a collision

• Introduce collision probability as function of passing distance

Collision probability

- Collision probability as function of passing distance
 - place 1st agglomerate at (0,0) and rotate randomly
 - place 2^{nd} agglomerate at (d_{max}, d_{offset}) and rotate randomly
 - move 2nd cluster parallel to x-axis
 - record probability of collision

Collision probability

• 9 cases

Modelling

- Represent agglomerate by radial density function $\rho(r)$
 - Model 1 real radial density function
 - Model 2 Lattuada et al. (2004)

$$\rho(r) = Ar^{\beta} \exp\left[-\left(\frac{r}{R_c}\right)^z\right] \text{ with } \mathbf{R}_c = pR_p i^{1/D_f}$$

• Model 3 – Rogak & Flagan (1990)

$$\rho(r) = Cr^{D_f - 3}$$

Modelling

• Use ideas of kinetic gas theory to compute number of collisions

Solve

Collision Probabilities

• Direct simulations vs. model 2

The setups

• Simulations for R_g =3, D_f =1.6, case C8 (σ =100nm)

Detailed LD

early time

late time

Results

• Number of clusters for $R_g=3$, $D_f=1.6$

Results

• PSD at different times (R_g =3, D_f =1.6)

Results

• Average cluster size (R_g=3, D_f=1.6)

Further steps

- Results semi-successful for modelled radial densities why?
- Results good if correct collision probability used, but what about ...
 - · Large uncertainty when basing the analysis on individual clusters
 - Find appropriate characteristics for an average agglomerate of $R_{\rm g}$ and $D_{\rm f}$
 - For collision statistics between single particle and cluster:

University of Stuttgart

Summary

... and future work

<u>Achievements</u>

- Modified MD code to account for particle agglomeration
- Parameterization of D_f as function of R_g (and turbulent advective field)
- Lack of sufficient statistics leads to coarse-graining
- Major issue: collision probability for CG particle
 - Functional dependency computed
 - Functional dependency modelled
- Large scale computations set up and appropriate CG model proposed
- Issues to be solved in future work
 - Large scale computations for CG validation
 - Varying CG particles
 - Non-sphericity of CG particle
 - Compare new expression with standard expressions for collision kernels

University of Stuttgart Germany

Thank you!

Literature

G. Inci, A. Arnold, A. Kronenburg, and R. Weeber, "Modelling nano-particle agglomeration using local interactions". Aerosol Sci. Technol., 48:8, 842-852 (2014), DOI: 10.1080/02786826.2014.932942.

G. Inci, A. Kronenburg, R. Weeber and D. Pflueger, "Langevin Dynamics simulation of transport and aggregation of soot nano-particles in turbulent flows", Flow Turbul. Combust. (2017). DOI: 10.1007/s10494-016-9797-3

Acknowledgements:

G. Inci, R. Weeber, A. Arnold, C. Holm Funded by DFG under grant number SFB-716/A8