Effect of turbulence intensity and mixture composition on the localised forced ignition of turbulent homogeneous and inhomogeneous mixtures

C. Turquand d'Auzay^{\dagger}, V. Papapostolou^{\dagger}, N. Chakraborty^{\dagger}, S. Ahmed^{\ddagger}

[†] Newcastle University - School of Engineering [‡] Qatar University - Department of Mechanical and Industrial Engineering - College of Engineering

UKCTRF 2018

12th September 2018

- **2** Computational Framework
- **3** Ignition of homogeneous mixture
- **4** Ignition of inhomogeneous biogas mixtures

5 Conclusions

- 2 Computational Framework
- **3** Ignition of homogeneous mixture
- Ignition of inhomogeneous biogas mixtures

5 Conclusions

Why forced ignition ?

- $\bullet\,$ Ignition of flammable mixture with a ${\bf spark}$ or a ${\bf laser}$
- Initiates combustion and influences subsequent burning
- Significant role in transportation
 - Spark-ignition engine (homogeneous mixture)
 - Direct-injection engines (*in*homogeneous mixtures)
 - ► Gas-turbine relight (*in*homogeneous mixtures)
- Numerous experimental and numerical investigations^{1–2}

Current investigation of localised forced ignition

- Homogeneous, premixed
- Inhomogeneous, partially premixed

C. Turquand, V. Papapostolou

DNS of forced ignition

¹ Mastorakos, E., Progress in Energy Combustion Sciences, 35 (2009)

² Mastorakos, E., Proceedings of the Combustion Institute, 36 (2017)

2 Computational Framework

3 Ignition of homogeneous mixture

1 Ignition of inhomogeneous biogas mixtures

5 Conclusions

Computational Framework

Numerical solver

- 3D DNS compressible code SENGA+¹
- $\bullet\,$ Mass, species, momentum and ${\bf energy}$ equations solved
- Uniformly spaced Cartesian grid
- 10^{th} order in space, 3^{rd} order in time

Spark modelling

• Gaussian in space :
$$q''' = A_q \exp(-r^2/2\mathbf{R_{sp}}^2)$$

• A_{q} determined by the volume integral : $\dot{Q} = \int_{M} q''' dV$

• Heaviside in time :
$$\dot{Q} = \mathbf{a_{sp}}\rho_0 C_P \tau T_0 \left(\frac{4}{3}\pi \delta_z^3\right) \left[\frac{H(t) - H(t - t_{sp})}{t_{sp}}\right]$$

• Spark duration : $t_{sp} = \mathbf{b}_{sp} t_f$

¹ Jenkins, K.W., Cant, R.S., Proc. 2nd AFOSR Conf. DNS and LES (1999)

DNS of forced ignition

- 2 Computational Framework
- 3 Ignition of homogeneous mixture

Ignition of inhomogeneous biogas mixtures

5 Conclusions

Minimum Ignition Energy (MIE)

• Minimum energy deposited to obtain a successful **ignition** or **ignition and** subsequent propagation

• MIE transition is not yet understood and has yet to be analysed **numerically**

Cardin, C. et. al., Combustion and Flame, 160(8) (2013) Shy, S.S., Liu, C.C., Shih, W.T., Combustion and Flame, 157(2) (2010) C. Turguand, V. Papapostolou

Objectives

- To reproduce numerically Shy *et al.* and Cardin *et al.* experiments for a turbulent homogeneous stoichiometric methane-air mixture
- To understand the effect of turbulence on the early stages of kernel formation and subsequent propagation
- To provide physical insight into the MIE transition

Computation set-up

- Computational domains : $27\delta_{th} \times 27\delta_{th} \times 27\delta_{th} \rightarrow 512^3$ cells $37\delta_{th} \times 37\delta_{th} \times 37\delta_{th} \rightarrow 700^3$ cells
- Chemistry : Single-step
- Boundary conditions : NSCBC partially non-reflecting inflow/outflow
- Initial turbulent field : Batchelor-Townsend spectrum¹ imposed with Rogallo method² with $l_t/\delta_{th} = 4.4$

¹ Batchelor, G.K., Townsend, A.A., Proc. Royal Society London (1948)

² Rogallo, R.S., NASA Ames Research Centre (1990)

C. Turquand, V. Papapostolou

DNS of forced ignition

Simulation parameters

- Binary CH₄-air mixture
 - Equiv. ratio $\phi = 1.0$
 - Heat release $\tau = 3.0$
 - ► Zel'dovich number $\beta = 6.0$
 - $\blacktriangleright \text{ Sc} = \Pr = 0.7$
- Ignition loc. $L_{\rm x}/2, L_{\rm y}/2, L_{\rm z}/2$
- Ignition radius $R_{sp}/\delta_{th} = 1.2$
- Ignition duration $b_{sp} = 0.2$
- Final time

• Ignition
$$t_{\rm sim} \approx 1 - 2t_{sp}$$

▶ Propag. $t_{\rm sim} \approx 4 - 10 t_{sp}$

Flame-turbulence interaction

- Iso-surface of $T = (\hat{T} T_0)/(T_{ad} T_0) = 0.6$ shown
- Kernel remains perfectly spherical for $u'/s_l^0 = 0.0$
- Kernels get increasingly wrinkled with turbulence

$u'/s_l^0 = 0.0$	$u'/s_l^0 = 4.0$	$u'/s_l^0 = 9.0$	$u'/s_l^0 = 18.0$

MIE Transition

- Good qualitative agreement \rightarrow Transition is observed
- Quantitative agreement dependent on experimental data

Temporal Evolution - Ignition

Temporal Evolution - Propagation - $\Gamma = \Gamma^p_{\text{MIE}}$

C. Turquand, V. Papapostolou

DNS of forced ignition

12th September 2018 14 / 30

Stochastic behaviour

- Success rate very dependent on the initial turbulence
- Measurement of the success rate
 - ▶ 3 different initial fields with identical l_t and u'/s_l^0
 - Identical ignition energy
 - Identical spark parameters (radius, duration, location)

Ignition stochasticity

- Analysis of energy balance
- Local spatial fluctuations of curvature increase the normal component of diffusion

(T = 0.2)

Propagation stochasticity

- Kernel displaced rapidly due to turbulence
- Propagation dependent on conditions far away from ignitor

(T = 0.6)

- 2 Computational Framework
- **3** Ignition of homogeneous mixture
- **4** Ignition of inhomogeneous biogas mixtures

5 Conclusions

Background

- Increased energy demand worlwide and stringent pollution policies
- Necessary to develop engines compatible with several alternative fuels
- Re-use of CO₂ in combustion devices
 - Exhaust Gas Recirculation (EGR) : dilution of fresh gas with exhaust (CO_2)
 - Biogas : mixture of CH_4 and CO_2

Objectives

- Investigate the effects of $\rm CO_2$ dilution and turbulence on the ignition of a shearless mixing layer
 - ► Ignition/Propagation success
 - Flame structure

Chemistry

- Single-step chemistry can not represent CO₂ dilution
- Westbrook and Dryer 2-step mechanism used instead¹
 - ▶ Constants from CERFACS 2s_CM2 mechanism²
 - ▶ Pre-exponential adjustment (PEA) for rich mixtures

	A (cgs)	$eta~(\mathrm{cgs})$	$E_a \ (cal/mol)$		
$\overline{\mathrm{CH}_4 + 1.5 \mathrm{O}_2 \Rightarrow \mathrm{CO} + 2 \mathrm{H}_2\mathrm{O}}$	2.00×10^{15}	0.0	35.0×10^3		
$n_{\rm CH_4} = 0.9, n_{\rm O_2} = 1.1$ CO + 0.5 O ₂ \Rightarrow CO ₂ CO ₂ \Rightarrow CO + 0.5 CO ₂	2.00×10^9 8.11×10^{10}	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	12.0×10^{3} 77.194×10^{3}		
$\mathcal{Q} = AT^{\beta} \exp\left(-E_a/\mathcal{R}_u T\right) \prod_{l=1}^N \left[X_l\right]^{n_l}$					

¹Westbrook, C.K. and Dryer, F.L., Combustion Sciences and Technology 27, pp. 31-43 (1981) ²Bibrzycki, J. and Poinsot, T., Work. note ECCOMET WN/CFD/10/17, CERFACS (2010) C. Turquand, V. Papapostolou DNS of forced ignition 12th September 2018

20/30

Biogas composition

- Global reaction with dilution : $CH_4 + 2(O_2 + 3.76N_2) + aDiluent \Rightarrow Products$
- Dilution percentage (molar fraction of CO₂) : $\psi = \frac{a}{a+1+2+7.52} = \frac{a}{a+10.52}$

Chemistry validation

Simulation parameters

- Computational Domain : $23\delta_{th} \times 23\delta_{th} \times 23\delta_{th}$ (360³ cells) or $9.25l_t \times 9.25l_t \times 9.25l_t$
- Boundary conditions : Periodic in transverse (y/z), NSCBC partially non-reflecting in x-direction
- Initial turbulent field : Batchelor-Townsend spectrum¹ imposed with Rogallo method², $l_t/\delta_{th} = 2.5$
- Simulation time : min. $t/t_{sp} = 10$ and up to $t/t_{sp} = 20$

Spark and mixture set-up

- Ign. loc. : $L_x/2, L_y/2, L_z/2$
- Spark : $a_{sp} = 3.5$, $R_{sp}/\delta_{th} = 0.5$, $b_{sp} = 0.2$

• Initial mixture fraction :

$$\xi = \xi_{st} \left(1 - \operatorname{erf} \left(\frac{x - x_0}{\delta_{\theta}} \right) \right)$$

• Mixture composition :

$$Y_{o\infty} = 0.233, Y_{CH_{4\infty}} = f(\psi),$$

 $Y_{CO_{2\infty}} = g(\psi)$

• Initial
$$Y_k$$
: $Y_{CH_4} = Y_{CH_4\infty}\xi$,
 $Y_{CO_2} = Y_{CO_2\infty}\xi$, $Y_o = Y_{o\infty}(1-\xi)$

¹ Batchelor, G.K., Townsend, A.A., Proc. Royal Society London (1948)
 ² Rogallo, R.S., NASA Ames Research Centre (1990)

C. Turquand, V. Papapostolou

DNS of forced ignition

Direct Numerical Simulation dataset

• Turbulence intensity u'/s_l^0

u'/s_l^0	Ka	Da	Re_t
0.0	_	_	_
4.0	5.06	0.63	41.4
8.0	14.3	0.31	82.7

• Initial mixing layer width $\delta_{\theta}/\delta_{th}$

• Biogas composition ψ

ψ	$\xi_{ m st}$	$Y_{{ m CH}_4\infty}$	$Y_{\rm CO_2\infty}$
0.000	0.055	1.000	0.000
0.025	0.092	0.574	0.426
0.050	0.128	0.396	0.604

Propagation success

- Measurement of the propagation success by looking at T_{max} and $V_{c \ge 0.9}$
 - ▶ No propagation at $t/t_{sp} = 10$:
 - Propagation up to $t/t_{sp} \leq 20$:
 - Propagation at to $t/t_{sp} = 20$: •
- Conditions for failed propagation :
 - ► Large turbulence intensity u'/s_l^0
 - Small initial thickness $\delta_{\theta}/\delta_{th}$, i.e. large initial $\chi = 2D(\nabla\xi)^2$
 - No significant effect of ψ (within the studied range)

Iso-surfaces of
$$\xi = \xi_{st}$$
 and $c = 0.7$

(a)
$$u'/s_l^0 = 0.0$$
 (b) $u'/s_l^0 = 4.0$ (c) $u'/s_l^0 = 8.0$

- 2 Computational Framework
- **3** Ignition of homogeneous mixture
- **1** Ignition of inhomogeneous biogas mixtures

(5) Conclusions

Response of spark ignition to turbulence/composition

- Homogeneous mixtures
 - ▶ MIE is of particular interest for gas turbine relight, and ICE
 - The transition in MIE observed experimentally has been reproduced numerically (ignition and propagation)
 - ▶ Good qualitative/quantitative comparison with experimental results
 - ▶ Stochastic behaviour correctly captured
- Inhomegeneous mixtures
 - ▶ Dilution does not affect the energy input/max. temperature reached
 - ▶ Turbulence intensity remains the key parameter for the success of propagation
 - ▶ Dilution has a significant impact on the growth rate of the kernels
 - Shown the formation of edge flames (triple points)

Kernel ignition

- In-depth analysis of the mixing layer database (in progress)
- Generation of DNS database and analysis of MIE for spray combustion (in progress)

Jet ignition

• New DNS database of biogas jet ignition (in progress)

Financial support

- British Council (Newton Grant)
- EPSRC

Computational support

- Rocket HPC (Newcastle)
- Cirrus (EPSRC)
- ARCHER : 10,000 kAUs