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Motivation

Why forced ignition ?

• Ignition of flammable mixture with a spark or a laser

• Initiates combustion and influences subsequent burning

• Significant role in transportation
I Spark-ignition engine (homogeneous mixture)
I Direct-injection engines (inhomogeneous mixtures)
I Gas-turbine relight (inhomogeneous mixtures)

• Numerous experimental and numerical investigations1 2

Current investigation of localised forced ignition

• Homogeneous, premixed

• Inhomogeneous, partially premixed

1 Mastorakos, E., Progress in Energy Combustion Sciences, 35 (2009)
2 Mastorakos, E., Proceedings of the Combustion Institute, 36 (2017)
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Computational Framework

Numerical solver
• 3D DNS compressible code SENGA+1

• Mass, species, momentum and energy equations solved

• Uniformly spaced Cartesian grid

• 10th order in space, 3rd order in time

Spark modelling

• Gaussian in space : q′′′ = Aq exp(−r2/2Rsp
2)

• Aq determined by the volume integral : Q̇ =

∫
V
q′′′dV

• Heaviside in time : Q̇ = aspρ0CP τT0

(
4

3
πδ3z

)[
H(t)−H(t− tsp)

tsp

]
• Spark duration : tsp = bsptf
1 Jenkins, K.W., Cant, R.S., Proc. 2nd AFOSR Conf. DNS and LES (1999)
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Ignition of homogeneous mixture

Minimum Ignition Energy (MIE)

• Minimum energy deposited to obtain a successful ignition or ignition and
subsequent propagation

• MIE transition is not yet understood and has yet to be analysed numerically

1 Cardin, C. et. al., Combustion and Flame, 160(8) (2013)
2 Shy, S.S., Liu, C.C., Shih, W.T., Combustion and Flame, 157(2) (2010)
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Ignition of homogeneous mixture

Objectives

• To reproduce numerically Shy et al. and Cardin et al. experiments for a turbulent
homogeneous stoichiometric methane-air mixture

• To understand the effect of turbulence on the early stages of kernel formation and
subsequent propagation

• To provide physical insight into the MIE transition
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Ignition of homogeneous mixture

Computation set-up

• Computational domains :
27δth × 27δth × 27δth → 5123 cells
37δth × 37δth × 37δth → 7003 cells

• Chemistry : Single-step

• Boundary conditions :
NSCBC partially non-reflecting inflow/outflow

• Initial turbulent field : Batchelor-Townsend
spectrum1 imposed with Rogallo method2 with
lt/δth = 4.4

1 Batchelor, G.K., Townsend, A.A., Proc. Royal Society London (1948)
2 Rogallo, R.S.,, NASA Ames Research Centre (1990)
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Ignition of homogeneous mixture

Simulation parameters

• Binary CH4-air mixture
I Equiv. ratio φ = 1.0
I Heat release τ = 3.0
I Zel’dovich number β = 6.0
I Sc = Pr = 0.7

• Ignition loc. Lx/2, Ly/2, Lz/2

• Ignition radius Rsp/δth = 1.2

• Ignition duration bsp = 0.2

• Final time
I Ignition tsim ≈ 1− 2tsp
I Propag. tsim ≈ 4− 10tsp
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Ignition of homogeneous mixture

Flame-turbulence interaction

• Iso-surface of T = (T̂ − T0)/(Tad − T0) = 0.6 shown

• Kernel remains perfectly spherical for u′/s0l = 0.0

• Kernels get increasingly wrinkled with turbulence

u′/s0l = 0.0 u′/s0l = 4.0 u′/s0l = 9.0 u′/s0l = 18.0
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Ignition of homogeneous mixture

MIE Transition
• Good qualitative agreement → Transition is observed

• Quantitative agreement dependent on experimental data
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Ignition of homogeneous mixture

Temporal Evolution - Ignition
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Ignition of homogeneous mixture

Stochastic behaviour
• Success rate very dependent on the initial

turbulence

• Measurement of the success rate
I 3 different initial fields with identical lt

and u′/s0l
I Identical ignition energy
I Identical spark parameters (radius,

duration, location)
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Ignition of homogeneous mixture

Ignition stochasticity

• Analysis of energy balance

• Local spatial fluctuations of curvature increase the normal component of diffusion
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Ignition of homogeneous mixture

Propagation stochasticity

• Kernel displaced rapidly due to turbulence

• Propagation dependent on conditions far away from ignitor
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Ignition of inhomogeneous biogas mixtures

Background

• Increased energy demand worlwide and stringent pollution policies

• Necessary to develop engines compatible with several alternative fuels

• Re-use of CO2 in combustion devices
I Exhaust Gas Recirculation (EGR) : dilution of fresh gas with exhaust (CO2)
I Biogas : mixture of CH4 and CO2

Objectives

• Investigate the effects of CO2 dilution and turbulence on the ignition of a shearless
mixing layer
I Ignition/Propagation success
I Flame structure
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Ignition of inhomogeneous biogas mixtures

Chemistry

• Single-step chemistry can not represent CO2 dilution

• Westbrook and Dryer 2-step mechanism used instead1

I Constants from CERFACS 2s CM2 mechanism2

I Pre-exponential adjustment (PEA) for rich mixtures

A (cgs) β (cgs) Ea (cal/mol)

CH4 + 1.5 O2 ⇒ CO + 2 H2O 2.00× 1015 0.0 35.0× 103

nCH4 = 0.9, nO2 = 1.1
CO + 0.5 O2 ⇒ CO2 2.00× 109 0.0 12.0× 103

CO2 ⇒ CO + 0.5 CO2 8.11× 1010 0.0 77.194× 103

Q = AT β exp (−Ea/RuT )
∏N
l=1 [Xl]

nl

1Westbrook, C.K. and Dryer, F.L., Combustion Sciences and Technology 27, pp. 31-43 (1981)
2Bibrzycki, J. and Poinsot, T., Work. note ECCOMET WN/CFD/10/17, CERFACS (2010)
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Ignition of inhomogeneous biogas mixtures

Biogas composition

• Global reaction with dilution : CH4 + 2 (O2 + 3.76N2) + aDiluent⇒ Products

• Dilution percentage (molar fraction of CO2) : ψ =
a

a+ 1 + 2 + 7.52
=

a

a+ 10.52

Chemistry validation
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Ignition of inhomogeneous biogas mixtures

Simulation parameters

• Computational Domain :
23δth × 23δth × 23δth (3603 cells) or
9.25lt × 9.25lt × 9.25lt

• Boundary conditions : Periodic in
transverse (y/z), NSCBC partially
non-reflecting in x-direction

• Initial turbulent field : Batchelor-Townsend
spectrum1 imposed with Rogallo method2,
lt/δth = 2.5

• Simulation time : min. t/tsp = 10 and up to
t/tsp = 20

Spark and mixture set-up

• Ign. loc. : Lx/2, Ly/2, Lz/2

• Spark : asp = 3.5, Rsp/δth = 0.5,
bsp = 0.2

• Initial mixture fraction :

ξ = ξst

(
1− erf

(
x− x0
δθ

))
• Mixture composition :
Yo∞ = 0.233, YCH4∞ = f(ψ),
YCO2∞ = g(ψ)

• Initial Yk : YCH4 = YCH4∞ξ,
YCO2 = YCO2∞ξ, Yo = Yo∞ (1− ξ)

1 Batchelor, G.K., Townsend, A.A., Proc. Royal Society London (1948)
2 Rogallo, R.S., NASA Ames Research Centre (1990)
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Ignition of inhomogeneous biogas mixtures

Direct Numerical Simulation dataset

• Turbulence intensity u′/s0l
u′/s0l Ka Da Ret

0.0 − − −
4.0 5.06 0.63 41.4
8.0 14.3 0.31 82.7

• Initial mixing layer width δθ/δth
• Biogas composition ψ

ψ ξst YCH4∞ YCO2∞

0.000 0.055 1.000 0.000
0.025 0.092 0.574 0.426
0.050 0.128 0.396 0.604
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Ignition of inhomogeneous biogas mixtures

Propagation success

• Measurement of the propagation
success by looking at Tmax and Vc>0.9

I No propagation at t/tsp = 10 :
I Propagation up to t/tsp 6 20 :
I Propagation at to t/tsp = 20 :

• Conditions for failed propagation :
I Large turbulence intensity u′/s0l
I Small initial thickness δθ/δth, i.e.

large initial χ = 2D(∇ξ)2
I No significant effect of ψ (within the

studied range)
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Ignition of inhomogeneous biogas mixtures

Propagation success

• Plane δθ/δth = 3.45
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Ignition of inhomogeneous biogas mixtures

Iso-surfaces of ξ = ξst and c = 0.7

(a) u′/s0l = 0.0 (b) u′/s0l = 4.0 (c) u′/s0l = 8.0
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Conclusions

Response of spark ignition to turbulence/composition

• Homogeneous mixtures
I MIE is of particular interest for gas turbine relight, and ICE
I The transition in MIE observed experimentally has been reproduced numerically

(ignition and propagation)
I Good qualitative/quantitative comparison with experimental results
I Stochastic behaviour correctly captured

• Inhomegeneous mixtures
I Dilution does not affect the energy input/max. temperature reached
I Turbulence intensity remains the key parameter for the success of propagation
I Dilution has a significant impact on the growth rate of the kernels
I Shown the formation of edge flames (triple points)
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Future work

Kernel ignition

• In-depth analysis of the mixing layer database (in
progress)

• Generation of DNS database and analysis of MIE for
spray combustion (in progress)

Jet ignition

• New DNS database of biogas jet ignition (in progress)
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