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BIOMASS FOR ENERGY – Motivation

- Optimization of combustor designs towards systems with:

o Increased thermal efficiency

o Low emissions level

o Fuel flexibility

o High acoustic stability

Simulations of turbulent combustion, which involves complex coupled multi-physic 

phenomena, can play an important role in the development of combustors

- Minimize the cost:

o Reduce the amount of experimental testing
o Better insight of the flow field and flame dynamics
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BIOMASS FOR ENERGY – Alya



BIOMASS FOR ENERGY – Governing equations
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WP5 BIOMASS FOR ENERGY – Premixed flamelets

• Enthalpy and mixture 
fraction (Z) are constant 
along the flame

Flamelets generated for CH4-H2-N2 fuel

• Solution are calculated at 
Z values within the 
flammability limits

• RPV source term, 
transport properties and 
NASA polynomial 
coefficients are tabulated

• Space variable changed to 
reaction progress variable: 

𝑐 =
∑𝑎E 𝑌E − 𝑌E,HI

∑𝑎E 𝑌E,JK4 − 𝑌E,HI
	

𝜔;̇
• Presumed Beta-PDF for 

the calculation of the mean 
Favre-averaged quantities



BIOMASS FOR ENERGY – Heat losses

Source term and properties are computed tabulated for several non-dimensional 
enthalpy values

𝑖 =
ℎ − ℎMHI

ℎMNO − ℎMHI • ℎMNO is defined from 
adiabatic conditions

• ℎMHI is determined from the  
value at which the flame 
speed is almost negligible

• Source term is zero if ℎ < ℎMHI

• Effect of enthalpy variance is 
neglected



BIOMASS FOR ENERGY – Sandia D flame



BIOMASS FOR ENERGY – Sandia D flame
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BIOMASS FOR ENERGY – PRECCINSTA setup

Fuel �̇�NHR
(g/s)

�̇�S
(g/s)

CH4 12.2366 0.5983

75% CH4
25% CO2

12.2366 1.1468

50% CH4
50% CO2

12.2366 2.2437

50% CH4
40% CO2
10% N2

12.2366 2.1241



BIOMASS FOR ENERGY – PRECCINSTA  CH4

Mean Temperature
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BIOMASS FOR ENERGY – PRECCINSTA CH4

Mean axial velocity



BIOMASS FOR ENERGY – PRECCINSTA CH4

Mean radial velocity



BIOMASS FOR ENERGY – PRECCINSTA CH4

Mean tangential velocity



BIOMASS FOR ENERGY – PRECCINSTA CH4

Rms axial velocity



BIOMASS FOR ENERGY – PRECCINSTA CH4

Rms radial velocity



BIOMASS FOR ENERGY – PRECCINSTA CH4

Rms tangential velocity



BIOMASS FOR ENERGY – Averaged temperature fields

50%v CH4 – 50%v CO2:

75%v CH4 – 25%v CO2:

50%v CH4 – 40%v CO2 – 10%v N2:

CH4:

• Flame temperature 
decreases because of 
the dilution effect 
(lower NOx emissions) 

• Reaction zone is more 
compact with higher 
CH4 content



BIOMASS FOR ENERGY – Averaged temperature lines



BIOMASS FOR ENERGY – Averaged velocity fields

50%v CH4 – 50%v CO2:

75%v CH4 – 25%v CO2:

50%v CH4 – 40%v CO2 – 10%v N2:

CH4:

• Despite the difference 
in flame temperature, 
the velocity fields are 
not highly affected 
(similar recirculation 
length and strength)



BIOMASS FOR ENERGY – Averaged velocity lines



BIOMASS FOR ENERGY – Averaged CO fields

• Maximum CO reduces 
with the dilution, but 
mean value at the exit 
is higher

• Higher flame-wall 
interaction for lower 
CH4 content

50%v CH4 – 50%v CO2:

75%v CH4 – 25%v CO2:

50%v CH4 – 40%v CO2 – 10%v N2:

CH4:



BIOMASS FOR ENERGY – Averaged CO lines



BIOMASS FOR ENERGY – Averaged NO fields

50%v CH4 – 50%v CO2:

75%v CH4 – 25%v CO2:

50%v CH4 – 40%v CO2 – 10%v N2:

CH4:

• YNO formed in regions 
where the residence 
time is high

• Large correlation with 
the temperature fields



BIOMASS FOR ENERGY – Averaged NO lines



BIOMASS FOR ENERGY – Axial line



BIOMASS FOR ENERGY – Conclusions and future work

• Despite the difference in flame temperature, the velocity fields are 
not highly affected by the fuel type

• Simulations with a non-premixed setup should introduce further 
velocity discrepancies between the cases

• The turbulent combustion model uses tabulated source terms and 
properties that depend on the progress variable, the mixture 
fraction, their variances and a non-dimensional enthalpy

• Alya has a high potential for performing large-scale simulations of 
practical combustion systems.

• Combination of premixed tables with diffusion tables can potentially 
improve the accuracy of the results 

• Model gives reasonable results when compared to experimental data
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