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Possible Causes of the Cyclic Variability

e Variation of the mean flow field

—  Swirl

— Tumble

e Variation in turbulence

— Integral scales

— Root-mean-square velocity

e Variation of mixture composition

— Equivalence ratio of the inhaled fresh charge
— Amount of the trapped residuals

— Amount of the recirculated exhaust (EGR)

e Variation of the flame initiation

— Spark energy

— Composition at the point and instance of ignition
* Any other thing ... ...
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Objectives

** Investigate the dynamics of turbulent free flame

** Provide closer examination on turbulent premixed flames

** Understand the impact of turbulence on cyclic variation of
combustion



Experimental Setup
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LUPOE2D - Leeds University Ported Optical Engine
version 2 with Disc-head

LUPOE engine structure Blank plugs

Top window <— Sparkplug Side window -~

N2/ l///m
Laser ]S u;"‘> I

LL

Static /% Side window
transducer Z;//

Exhaust |
' ports i Y ()
| | ynamic
4 \ transducer
/ N
Intake Cross section view A Top view of
of the LUPOE the optical head
Bore (mm) 80
Stroke (mm) 110
Con Rod Length (mm) 232
Clearance Height (mm) 8
Compression Ration 11.47
Inlet Ports Opening/Closure CA (deg) 101.2

Exhaust Port Opening/Closure CA (deg) 127.6




PIV Setup
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Experimental setup for PIV system to record
flame propagation and flow field
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Imaging Processing
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Results : Laminar Flame Propagation
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Results: Laminar Flame Propagation
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Results: Laminar Flame Propagation :
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Cylinder pressure [bar]

Results: Turbulent Combustion
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Cyclic Variation of Combustion
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Results: Flame Front Unburned Turbulence :
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Burned gas (black) and different
unburned gas annulus (grey)
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and annulus width = 1.60 mm
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Results: Flame Front RMS
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* For turbulent free premixed combustion, the Lewis number indicates that
molecular diffusivity dominate the dynamic cellular flame of hydrogen/air

mixtures.
e The mean, transient and rms turbulent flow field has been closely

exanimated using PIV technique.
* The fluctuating velocity field from one cycle to another causes the cyclic

variation of combustion of Sl engines.
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e Correlate the turbulent burning velocity with the PIV flame speed
* Measure the liquid fuel (gasoline) under laminar conditions
e Experimental data for model development and validation (WP1)

UKCTRF WP1: Fundamental research
I.Premixed and non-premixed combustion involving gaseous fuels

ii.Liquid fuel combustion
lii.Combustion involving new fuels (e.g. hydrogen-enriched combustion, etc.)

iv.Detailed chemical mechanisms

v.New combustion regimes
vi.Experimental data for model development and validation



