Nucleation and structure of soot particles

<u>*Kimberly Bowal, Jacob Martin, Laura Pascazio, Markus Kraft* 12/09/2018</u>

Why study soot?

¹Hansen and Nazarenko, Proc. Natl. Acad. Sci. 101 (2004) ²Guarnieri and Balmes, The Lancet 383 (2014) ³IARC Monographs, 35, (1985)

Soot formation

CoMo

GROUP

Driving question: What role do curved PAHs and ions have in soot nucleation?

Dipole moment of curved PAHs

Significant dipole moment is due to the polarisation of π electrons from the concave to convex surface upon straining carbons – flexoelectric effect⁵

Interactions with ions

- HRTEM indicates aromatics with 10-20 rings⁶
- Interactions between ions and curved aromatics are strong and long range $(E \propto 1/r^2)$
- Suggests possible soot nucleation mechanism⁷

Flexoelectric dipole in MD

Flat PAHs

 isoPAHAP: Atomcentred point charges can describe the electrostatics⁸

Curved aromatics

 Need virtual atoms (offsite charges) to correctly describe the electrostatics

No virtual atoms

With virtual atoms

Fitting the isoPAHAP potential

Interaction energy function of corannulene dimers requires improved isoPAHAP parameters (dispersion, shape function) and virtual atoms

Curved PAHs and K⁺ nucleation

- Large system in molecular dynamics
- New force field: modified isoPAHAP with virtual atoms
- 1000 corannulene molecules
- With and without K⁺
- 500, 750, 1000, 1250, 1500 K

Molecular dynamics simulation videos⁹

with K+

without K+

Molecular dynamics results

- Clusters formed at 500 and 750 K
- Boiling point is 640 K⁹
- Form spherical-like clusters with small molecular stacks around the ion
- Molecular arrangement maximises electrostatic interactions

Cluster of curved PAHs

- Morphology different than cluster containing planar aromatics
- Long-range electrostatic interactions play significant role in interactions of curved PAHs

Ongoing / future work

- Extend simulations to larger soot-representative molecule with chemi-ions
- Use advanced MD to determine detailed nucleation properties
- Polarisable molecular dynamics in Tinker-HP

GROUP

Dielectric constant

$$\varepsilon = 1 + \frac{4\pi}{3Vk_BT\varepsilon_0} \left(\langle M^2 \rangle - \langle M \rangle^2 \right)$$

Summary

Curved PAHs in soot particles have a significant dipole moment due to the shift of electrons between curved surfaces

Flexoelectric effect cannot be adequately described by an atom-centred charges

Using off-site point charges and enhanced dispersion interactions allowed description of initial molecular dynamics simulations of large systems

Formation and morphology of cluster around ion showed importance of including enhanced interactions

GROUP

 Work ongoing to determine detailed ion induced classical nucleation model

14

Computer allocation

Acknowledgements

