

Analysis of Markers for Combustion Mode and Heat Release in MILD Combustion using DNS

UKCTRF Annual Meeting 2018 – Selwyn College, Cambridge

N. Swaminathan & N. A. K. Doan

Outline

- A Brief Introduction
 - > What is MILD combustion?
 - > Why these markers?
- DNS Methodology
- Results
- Summary & Conclusion

Introduction

- Combustion and fossil fuels: main source of energy for the foreseeable future
- Need to improve thermal efficiency and reduce emissions "greener friendlier to the environment"
- Moderate or Intense Low-Oxygen Dilution (MILD) combustion: Promising concept

 $> T_r > T_{ign}$, $\Delta T < T_{ign}$, low O2 (< 5% by volume)

- Achieved using exhaust gases (recirculation, etc.)
- External/Internal recirculation
- Jet in hot co-flow or cross-flow

Introduction - What is MILD Combustion?

Introduction: MILD vs Conven. Comb. – from DNS (CST 186, p. 1075 2014)

Conventional Premixed

MILD

Introduction: Why HRR Markers?

- How to identify & characterise heat releasing zones in MILD combustion?
- > For conventional flames: OH, CHO, CH, CH2O, OH*, CH* and also OH x CH2O mainly for premixed flames, also depends on ϕ
- > H x CH2O worked well across ϕ (CnF 161 p. 3073, 2014)
- Would do these work for MILD or not?
- Two-scalar based marker OH x CH2O works well for premixed MILD combustion (CnF 161 p. 1063, 2014)
- > OH-PLIF is commonly used in many past studies of MILD combustion
- > OH* vs OH-PLIF show substantial differences (CST 186 p. 453, 2014)
- Can we assess these for non-premixed MILD combustion?

Methodology – Inflowing mixture

(PROCI 2012, CST 2014 CnF 2014, CnF 2018)

DNS Cases

Case	$l_o/\mathrm{L_Z}$	$\langle X_{02} \rangle$	X_{02}^{max}	L_c/L_Z	$\langle Z \rangle$	Z _{st}	σ_Z	$\langle c \rangle$	σ_c
AZ1	0.60	0.0270	0.035	0.77	0.008	0.010	0.0084	0.56	0.26
AZ2	0.79	0.0285	0.035	0.99	0.008	0.010	0.0105	0.56	0.28
BZ1	0.60	0.0160	0.020	0.77	0.0046	0.0058	0.0057	0.56	0.26

- ➤ Cases with L_c/L_Z ≤ 1 chosen as chemical length scale smaller than mixing length scale but high recirculation in MILD combustion may have L_c/L_Z ≈ 1
- Similar turbulence field for all cases ($Re_{l_0} \approx 96$) and all are globally lean cases, $\phi = 0.8$ same as previous premixed case in [4]

Results: Visualisation

UNIVERSITY OF

CASE AZ1:

- > Moderate temperature increase ($\Delta T \approx 150K$)
- Multiple & interacting reaction zones
- Significant interactions leading to thickening, reaction zones occupy wider regions & distributed => homogeneous field saw earlier
- Premixed, non-premixed and auto-ignition region – Complex dynamics - modelling?? (CnF 2018)

Results: Q, OH, etc

 $\Delta Y_{OH} = Y_{OH}^R - Y_{OH}^{CD}$

Results: Conditional PDF of ΔY_{OH}

Results: PLIF synthesised from DNS

> Instantaneous comparison in mid x-y plane (CASE AZ1)

> Only *HCO* and $OH \times CH_2O$ capture features of HRR

Results: Scatter plots

> Two-scalar markers are good as for premixed MILD combustion

UNIVERSITY OF

Results: Two-scalar Markers

Two-scalar markers are good

UNIVERSITY OF

This is for non-premixed MILD – globally lean

Previously they were shown for premixed cases

Results: Chemiluminescent – OH*

➢ Volume rendered image of HRR and OH[∗]

Overall good correlation between HRR and OH*, but not for fine features as it is a "Line of Sight" method

Premixed vs non-premixed identification

Premixed and non-premixed identification

> Joint-PDF of *FI* and *CM* focused in regions of CM < 0

Numerical Schlieren – conven. & MILD

MILD combustion has mild gradients of temperature/density compared to conventional flames

Schlieren will give unambiguous message

$$S(x, y) = \beta \exp\left(-\frac{\kappa |\nabla \rho|}{|\nabla \rho|_{\max}}\right)$$

$$\beta = 0.8, \kappa = 15$$

(Hadjadj & Kudryavtsev 2005)

Numerical Schlieren Images

Premixed flames

UKCTF Annual meeting, Sep. 2018

Conclusion

HRR markers for MILD combustion are assessed using DNS data

- ≻ HRR Marker
 - > *HCO*-PLIF: good marker but has low signal-to-noise ratio
 - $> OH \times CH_2O \& H \times CH_2O$ PLIF are good
 - OH* chemiluminescent image: good marker (improvement over OH-PLIF)
 - Single scalar PLIF need to be cautious
- Identification of premixed/non-premixed regions based on CEMA
 Some level of agreement but large premixed regions are misidentified
- Schlieren easy way of distinguishing MILD & conven. combustion, should be done first in Exps. to establish that the combustion is MILD

Questions?

Research Outcome

- Research outcome:
 - N. A. K. Doan, N. Swaminathan & Y. Minamoto. DNS of MILD Combustion with mixture fraction variations. Combustion and Flame, 189, 173-189 (2018).
 - N. A. K. Doan & N. Swaminathan. Role of radicals on MILD combustion inception. Proceedings of the Combustion Institute (2018).
 - N. A. K. Doan & N. Swaminathan. Autoignition and Flame Propagation in MILD combustion. Combustion and Flame (under review).
 - Best Use of ARCHER Award
 - Presentations at NC17, MCS2017, Symposium2018

