12/Sep/2018

Large Eddy Simulation of combustion instabilities in gas turbine engines

D. Noh, S. Navarro-Martinez

Department of Mechanical Engineering, Imperial College London, London, UK

UKCTRF Annual Meeting Selwyn College, Cambridge University

E. Karlis, Y. Hardalupas, A.M.K.P. Taylor, D. Fredrich, W. P. Jones

Imperial College London

Combustion Instabilities

- Lean premixed combustion:
 - Prone to thermoacoustic instabilities (combustion instabilities)

- Flameless Oxidation (FLOX) combustor
 - less sensitive to thermoacoustic and flame flashback, but they may have self-sustained flame dynamics (instabilities in combustion)

$$u'\phi'$$

Aim: Characterize using LES both types of *self-sustained* instabilities

Instabilities in Combustion

Methodology

- Large Eddy Simulation (LES)- Probability Density Function (PDF)
 - Stochastic Fields Methodology
- BOFFIN-LES (pressure-based)
 - Iow-Mach formulation (weakly compressible) for *instabilities in combustion*
 - fully compressible for *combustion instabilities*
- Mode decomposition

$$u(x, y, t) = \sum_{k=1}^{K} a_k(t) \cdot \phi_k(x, y)$$

- POD , DMD, ...
- Why HPC?
 - Long time series !!!!

Large Eddy Simulation of combustion instabilities in gas turbine engines 12/Sep/2018

Experimental configuration I

• Assess the LES framework in terms of its ability to capture "combustion instabilities" (partial blowout and strong reignition) caused by the jet flapping.

Large Eddy Simulation of combustion instabilities in gas turbine engines 12/Sep/2018

Numerical setup

Measurement Techniques		
Particle Imaging Velocimetry (PIV)		Flow velocity
OH-PLIF OH* chemiluminescence		Flame structure
Inlet Conditions		
Velocity	Time varying	
Pressure	1 atm	
Temperature	300 K	
Boundary Conditions		
Inlet	Digital inflow generator [6]	
Nozzle wall	No-slip & adiabatic	
Side wall	No-slip & fixed temperature (1000 K)	
Exit	Zero-gradient outflow	
Grid Quality		
No. of domains	No. of cel	ls Cell size
120	2 million (fin 1 million (coa	ne) 0.2 – 2 mm arse) 0.3 – 3.46 mm

Large Eddy Simulation of combustion instabilities in gas turbine engines

12/Sep/2018

Results – POD modes

POD modes from (a) the front view and (b) side view and (c) their energy contributions

 T_{flap} > 30 ms blow-out

Correlation between temporal coefficient of the 1st mode responsible for jet flapping (a_F) and heat release rate integrated over the bottom section of the chamber (<Q>)

Imperial College London

Results – Modelled jet flapping motion

The phase-dependent velocity field is modelled using as:

The phase-dependent velocity fields based on (a) the flapping mode and (b) the axial mode from the front view

Imperial College London

12/Sep/2018

Results – Jet-flame interaction for unstable cycle

Experimental configuration II

- The Rolls-Royce gas turbine combustor is investigated at Imperial College London to study thermoacoustic instabilities.
- Period-doubling bifurcation (nonlinear phenomenon): the gradual emergence of a subharmonic frequency while increasing the equivalence ratio (φ) for a given Reynolds number (Re).

Section through the model gas turbine combustor where entry points of air and methane flows are indicated by blue and red arrows respectively

Burner characteristics

- Axial swirler.
- Efficient air/fuel mixing through the premixing chamber.
- Transparent cylindrical fused silica combustor.
- Optical access to flame.

Experimental configuration II

- The Rolls-Royce gas turbine combustor is investigated at Imperial College London to study thermoacoustic instabilities.
- Period-doubling bifurcation (nonlinear phenomenon): the gradual emergence of a subharmonic frequency while increasing the equivalence ratio (φ) for a given Reynolds number (Re).

Increasing ϕ

Long-exposure images of (a) lifted and elongated, (b) transitional and (c) oscillating flames. Flow direction is from the bottom left of image to the top right

Target condition (self-excited thermoacoustic oscillations)

• Re = 17,000 and φ = 0.65

Measurements

- Pressure oscillations: high natural frequency pressure transducer.
- Chemiluminescence: High speed imaging, optical fiber/photomultiplier.

Imperial College London

Numerical setup – Computational mesh

Grid resolution (a) across the entire domain, (b) around the axial swirler and (c) diffuser and combustion chamber

0.19

0.2

0.21

Imperial College London

12/Sep/2018

0.22

0.23

Results – Flame cycles from LES

Large Eddy Simulation of combustion instabilities in gas turbine engines 12/Sep/2018

Results – Natural acoustic modes

Pressure fluctuations (left) and frequency spectra (right) from the experiment (top) and LES (bottom). Note that the experimental FFT is built based on the pressure signal for a duration of 18 s.

The fundamental frequency (f₁): ~ 170 Hz

The subharmonic frequency ($f_2 = f_1/2$): ~ 85 Hz (from experiment) ~ 65 Hz (from LES)

In LES, the simulated spectrum features broader peaks due to poorer frequency resolution: ~ 2.8E-06 Hz (from experiment) ~ 4.85 Hz (from LES)

The energy contained in the range of frequencies around the subharmonic peaks:

 \sim 1.6% of the total energy

Large Eddy Simulation of combustion instabilities in gas turbine engines 12/Sep/2018

Results – Phase-averaged flame dynamics EXP

The phase angle of pressure oscillations:

Experimental (top) and predicted (bottom) phase-averaged flame shapes (broadband flame chemiluminescence and heat release rate, respectively). Around 400 and 580 snapshots are used to represent the experimental and numerical averaging images at each phase respectively. Note that there is no optical access to the diffuser in the experiment and the measured profiles start from the axial location of 30 mm in the LES simulation. The red box highlights the dimensions of the experimental window for the measurement of flame chemiluminescence.

Imperial College London

12/Sep/2018

Results – Nonlinearity of thermoacoustic oscillations

Phase-space portraits of the measured dynamic pressure signal (m = 3, $\tau = 0.0016$ s). (a) is the global attractor reconstructed by a fraction of the signal corresponding to 0.22 s while (b)-(d) represent the attractor evolution with increments of around 0.07 s. Phase-space portraits of the simulated dynamic pressure signal (m = 3, $\tau = 0.0016$ s). (a) is the global attractor reconstructed by the signal corresponding to 0.2 s while (b)-(d) represent the attractor evolution with increments of 0.067 s.

Imperial College London

Results – Flame dynamics at the subharmonic frequency

The DMD analysis reveals the evolution of azimuthally convected hot combustion products around the centreline of the combustor.

The temporal evolution of the DMD reconstructions based on the measured flame chemiluminescence (top) and the simulated heat release rate (bottom) at the subharmonic frequency.

Large Eddy Simulation of combustion instabilities in gas turbine engines

12/Sep/2018

Results – Flame dynamics at the subharmonic frequency

The DMD analysis from the cross section of the burner better demonstrates the azimuthal convection of hot combustion products.

The DMD reconstruction based on the measured flame chemiluminescence (top) and the simulated heat release rate (bottom) at the subharmonic frequency.

Conclusions

- LES-PDF approach *with appropriate boundary conditions* are found to be promising for the prediction of the experimentally observed phenomena including:
 - Combustion instabilities caused by the jet oscillation in FLOX combustor
 - Thermoacoustic oscillations and the emergence of the subharmonic frequency due to period-doubling bifurcation in model gas turbine combustor
- The phase-space reconstruction and recurrence plots can be used to clearly visualise the nonlinear behaviour of the thermoacoustically excited flame based on the experimental and numerical results.
- The decomposition methods are proven to be useful when studying combustion instabilities such as:
 - POD: Correlation between self-excited jet oscillations and flame dynamics
 - DMD: Extraction of the flame dynamics at the subharmonic frequency

Further investigation

• DMD will be applied to the velocity fields from PIV measurements and LES

Imperial College London

Thank you for your attention!

Engineering and Physical Sciences Research Council SIEMENS

Effects of sgs scales

Imperial College London

12/Sep/2018

Results – Nonlinearity of thermoacoustic oscillations

Recurrence plots of the experimental (left) and numerical (right) pressure fluctuations based on the global attractors (m = 4, $\epsilon = 0.1$). The box embedded on each sub-figure contains a pattern typical of **Period 2 oscillations** – intermittently interrupted diagonal lines.