

Multi-Scale Subgrid Modelling of Turbulent Premixed Combustion at Engine Relevant Conditions

Suresh Menon, Reetesh Ranjan, Achyut Panchal School of Aerospace Engineering Georgia Tech

UKCTRF Annual Meeting Selwyn College, Cambridge, UK 12-13 September 2018

Introduction

- Turbulent combustion in energy conversion and propulsion devices occur in premixed, non-premixed and partially premixed models
- Multi-scale, non-linear interactions between turbulence, heat-release, acoustics, and boundary conditions.
- Premixed system: variation of equivalence ratio, lean blowout (LBO), combustion instability (CI), extinction-ignition, flashback, partial premixing
- Liquid spray systems involve vaporization and partial premixed combustion, LBO, CI, cold start, altitude restart

Aerospace Engineering

LES in Multi-injector Modeling – Cost and Closure!

2018 LRE, 15-inectors, Stable/CI

- 36M cells, coarse-grained LES
- 40 hours on 4K processors (3 FTT)
- TPG thermodynamics, 13 MPa
- PaSR, global 2-step kinetics, K_{sgs}

2020: Full LRE, 82-injectors, Transv CI

- ~200M cells, coarse-grained LES
- ~ 30-40 days on 10K processors (Est.)
- Real-Gas thermodynamics (DF+VLE)
- PaSR, global 2-step kinetics, K_{sgs}

2015: CVRC, 1 injector, Longitudinal Cl 1.5M cells, LEMLES+LDKM, 4-step kin., TPG 24 hours on 1.5K cores for 30 cycles of osc. Srinivasan et al., FTAC 2017

2016: TIC, 7 injector, Transverse CI

- 21M cells, two-scale LES, 13 MPa
- ~ 7 days on 2K processors (~5 cycles)
- TPG thermodynamics, 2-step kinetics
- LEMLES + LDKM K_{sgs} models

Tudisco and Menon, FTAC 2018

Aerospace Engineering

Problems Discussed Here

Turbulent premixed flame interaction at 1 atm

Turbulent premixed flame interaction at 10 atm

Premixed Swirl Combustor (LM6000)

Configuration	Re _t /Re _b	Fuel	Chemistry
Turbulent premixed flame	0 (10 ²)	Methane	4-step and 8- species
LM6000	<i>0</i> (10 ⁵)	Methane	73-step and 13- species
UDRI (OEM defined)	0 (10 ⁵)	Jet Fuel	202-step and 31-species

Towards Engine Relevant Conditions

Partially Premixed Combustion with Practical Fuels (UDRI) 4

Aerospace Engineering

Premixed Flame Turbulence Interaction

Reactants

- Freely propagating premixed methane-air flames
- $\phi = 0.7$, T_{ref}= 570 K, P_{ref} = 1 atm
- Flames A: TRZ, Flames B: BRZ
- What are the features of interest?

Case	Closure	$N_x \times N_y \times N_z$	u'/S _L	I/δ
A ₁	DNS	384 ³	10	6.2
A ₂	LEMLES	96 ³	10	6.2
A ₃	RRLES	96 ³	10	6.2
A ₄	QLLES	96 ³	10	6.2
B ₁	DNS	512 ³	50	9.6
B ₂	LEMLES	128 ³	50	9.6
B ₃	QLLES	128 ³	50	9.6
B ₄	RRLES	128 ³	50	9.6

Regime diagram

Flame Structure

Products

Case A_1 (t = 2 t₀)

Case B_1 (t = 3 t₀)

¹Ranjan et al., CST (2016)

Aerospace Engineering

Behavior of SGS Dissipation

• Resolved TKE equation:

$$\frac{\partial \bar{\rho}k}{\partial t} + \frac{\partial \bar{\rho}\tilde{u}_j k}{\partial x_j} = \alpha_{II} + \alpha_{\nu} + \alpha_{SGS} + \Pi - \epsilon_{\nu} - \epsilon_{SGS}$$

$$\alpha_{II} = -\frac{\partial \bar{p} \widetilde{u}_{j}}{\partial x_{j}}, \quad \alpha_{\nu} = \frac{\partial \overline{\tau_{ij}} \widetilde{u}_{i}}{\partial x_{j}}, \quad \alpha_{SGS} = -\frac{\partial \tau_{ij}^{SGS} \widetilde{u}_{i}}{\partial x_{j}}, \quad \Pi = \bar{p} \frac{\partial \widetilde{u}_{j}}{\partial x_{j}}, \quad \epsilon_{\nu} = \overline{\tau_{ij}} \widetilde{S}_{ij},$$

$$\epsilon_{SGS} = -\tau_{ij}^{SGS} \widetilde{S}_{ij} \text{ [SGS dissipation]}$$

$$\tau_{ij}^{SGS} = -2\bar{\rho} \nu_{T} \widetilde{S}_{ij}, \quad \epsilon_{SGS} = -\tau_{ij}^{SGS} \widetilde{S}_{ij}, \quad \nu_{T} = C_{\nu} \Delta \sqrt{k^{SGS}}$$

- Eddy viscosity based closures, $\epsilon_{SGS} \ge 0$
 - Forward cascade of energy from large-scales to small-scales
- In general, space-local and time-local backward transfer of energy from large-scale to small-scales may be observed, referred as backscatter
- Investigate SGS energy and scalar dissipations from DNS data

Aerospace Engineering

SGS Backscatter: A Priori Analysis

 A priori analysis of DNS backscatter of energy and scalar variance

$$\epsilon_{sgs} = -\tau_{ij}^{sgs} \tilde{S}_{ij}$$

$$\epsilon_{sgs,c} = -Y_{ij}^{sgs} \tilde{S}_{ij}$$

- Here, τ_{ij}^{sgs} is SGS stress and Y_{ij}^{sgs} is SGS scalar flux
- Backscatter: $\epsilon_{sgs} < 0$ and $\epsilon_{sgs,c} < 0$
- Solid curve is mean and dash-dotted curve is standard deviation
- Mean is net positive but about 30-40% of backscatter also observed

SGS dissipation of TKE

SGS dissipation of scalar variance

Aerospace Engineering

Turbulent Scalar Transport

- Both co- and counter-gradient transport occur
 - Gradient transport only when $-\langle c'u' \rangle \propto \partial \tilde{c} / \partial x$
 - Most conventional closure models do not account for counter-gradient effects
- Thermal expansion in counter-gradient transport competes with turbulent mixing responsible for co-gradient diffusion [Wenzel 2000].

Aerospace Engineering

LES Modeling Approaches

Aerospace Engineering

Finite-Rate Kinetics LES Equations

- Favre filtered compressible LES Navier-Stokes equations
- Favre filtered LES equations:

$$\frac{\partial \overline{\rho}}{\partial t} + \frac{\partial \overline{\rho} \widetilde{u}_i}{\partial x_i} = 0,$$

$$\frac{\partial \overline{\rho} \widetilde{u}_i}{\partial t} + \frac{\partial}{\partial x_j} \left[\overline{\rho} \widetilde{u}_i \widetilde{u}_j + \overline{P} \delta_{ij} - \overline{\tau}_{ij} + \tau_{ij}^{\text{sgs}} \right] = 0,$$

$$\frac{\partial \overline{\rho} \widetilde{E}}{\partial t} + \frac{\partial}{\partial x_i} \left[\left(\overline{\rho} \widetilde{E} + \overline{P} \right) \widetilde{u_i} + \overline{q}_i - \widetilde{u_j} \overline{\tau}_{ij} + H_i^{\text{sgs}} + \sigma_i^{\text{sgs}} \right] = 0,$$

$$\frac{\partial \overline{\rho} \widetilde{Y}_k}{\partial t} + \frac{\partial}{\partial x_i} \left[\overline{\rho} \left(\widetilde{Y}_k \widetilde{u}_i + \widetilde{Y}_k \widetilde{V}_{i,k} \right) + \mathcal{Y}_{i,k}^{\mathrm{sgs}} + \theta_{i,k}^{\mathrm{sgs}} \right] = \overline{\dot{\omega}}_k \quad k = 1, \dots, N_s.$$

- Terms requiring closure:
 - Subgrid-scale terms (superscript 'sgs')
 - Filtered reaction-rate term

Modeling of Turbulence-Chemistry Interaction

- Large-scale convection of scalars
 - by coherent structures and mean flow
 - Scalar interface is stretched/wrinkled but not molecularly mixed by these processes
- Other processes needed are
 - Small-scale processes
 - Turbulent mixing by smaller eddies (till Kolmogorov)
 - Molecular diffusion (including differential diffusion)
 - Reaction kinetics and heat release
 - Small-to-large scale coupling
 - Volumetric expansion due to heat release
 - Modification of the velocity field by heat release

Aerospace Engineering

Turbulent Combustion Models

- Models: assumed flame structure, scaleseparation assumption, reduced manifold dimension, chemical source closure, representation of mixing
- Models can be classified in terms of mixing and chemistry
- Common closures:

Georgia (College of

Tech (/ Engineering)

- Eddy Dissipation Concept (EDC)¹,
- Partially Stirred Reactor (PaSR)²,
- Thickened Fame Model (TFM)³,
- Flamelet⁴,
- Conditional Moment Closure (CMC)⁵,
- Conditional Source Estimation (CSE)⁶,
- Transported PDF⁷, Multi-Environment PDF⁸,
- Linear Eddy Model (LEM)⁹
- One-Dimensional Turbulence (ODT)¹⁰

Infinitely Fast	Bray-Moss-Libby	
Chemistry	Coherent Flame	
Finite-rate w/o molecular mixing	PDF transport	
Finite-rate with	Flamelet model	
filtered or model- ed reaction rate	G-equation, G-Z, DTF	
	EBU, FSD, PaSR, RRLES	
Finite-rate with molecular mixing	Linear-eddy, ODT	

Classification based on mixing and chemistry

¹Magnussedn (1981), ²Baudoin et al. (2009),
 ³Colin et al. (2000), ⁴Ihme & Pitsch (2008),
 ⁵Klimenko & Bilger (1999), ⁶Steiner & Bushe
 (2001), ⁷Haworth (2010), ⁸Fox (2003), ⁹Menon & Kerstein (2011), ¹⁰Echekki et al. (2011),

Aerospace Engineering

Employed Modeling Strategies

Aerospace Engineering

Features and Capabilities in LESLIE

	Ada	Main Solver Compressible Multi-block Structured FV/FE ptive Mesh Refinement with c	ıt cell		
Spatial Sche 2 nd /4 th Order (FV MUSCL/Central H 4/5/6 Compact Inter High-order hybrid High-order Finite Di	mes & FD) Hybrid rpolation WENO ifference	Turbulence Models One-equation Ksgs dynamic Smagorinsky dynamic WALE near wall K-w-SST, DES near-wall Hybrid RANS-LES	Turbulence-Chen Quasi-lami Eddy breakup, E Dynamically Th Subgrid Linea Flamelet-Prog	nistry Interaction nar model Eddy dissipation ickened Flame r Eddy Model iress Variable	on
Temporal Schemes O(2) Explicit 2 nd -4 th Order Explicit Runge-Kutta Implicit and Pre-conditioning		Thermodynamics CPG, TPG, Real Gas Vapor-liquid Equilibrium Mie-Grunesen JWL, Hayes, Abel-Nobel	Transport and Kinetics Power law, Sutherland Mixture averaged Multi-species Finite-Rate CANTERA, CHEMKIN		
				Ţ	\backslash
Characteristic Inflow/Outflow Supersonic Sponge Layers Reactive Wall Treatment Mass Ejection	S Brea Euleria Two Peridyr	Particle Phase Solid/liquid reactive particles akup, collision, compressibility, Soot, aerosol (MOMIC) In-Eulerian Eulerian-Lagrangian DePhase Dense Phase Solver namics Model for microstructure	Data Analy Turbulent stat Flame-Flow-Ao Analysis, UI Black: Produ Red: Current	rsis istics coustic DFs Heat Micro ction Code t Code Use	FSI ersed BCs S, void Transfer ostructure

Aerospace Engineering

Subgrid Models Investigated in Same Code

Modeling Type	Paradigm	Scalar Mixing	Reaction-rate
FRC-DNS	Finite-rate kinetics	-	-
FPV-DNS	Low dimensional manifold	Low dimensional - manifold	
LEMLES	Finite-rate kinetics/multi- scale	LEM	LEM
Single/Multi-level RRLES	Finite-rate kinetics/multi- scale	Eddy diffusivity	LEM
FPV-LES	Low dimensional manifold	Eddy diffusivity	Beta-PDF
SDR-LES	Low dimensional manifold	Eddy diffusivity	Modeled SDR
FPV-RRLES	Low dimensional manifold	Eddy diffusivity	LEM
SDR-RRLES	Low dimensional manifold	Eddy diffusivity	LEM

Aerospace Engineering

LEMLES Approach

- Exact species transport equation in the modified form: $\rho \frac{\partial Y_k}{\partial t} + \rho \left[\widetilde{u}_i + (u'_i)^R + (u'_i)^S \right] \frac{\partial Y_k}{\partial x_i} + \frac{\partial}{\partial x_i} \left(\rho Y_k V_{k,i} \right) = \dot{\omega}_k$ $u_i = \widetilde{u}_i + (u'_i)^R + (u'_i)^S$
- LEMLES¹ uses two-scale decomposition to solve for scalars Subgrid scale (Eulerian, Stochastic 1D)

$$Y_k^* - Y_k^n = \int_t^{t+\Delta t_{\text{LES}}} -\frac{1}{\rho} \left[\rho \left(u_i' \right)^S \frac{\partial Y_k^n}{\partial x_i} + \frac{\partial}{\partial x_i} \left(\rho Y_k V_{i,k} \right)^n - \dot{\omega}_k^n \right] dt'$$

Resolved scale (Lagrangian, Deterministic, 3D) $\frac{Y_k^{n+1} - Y_k^*}{\Delta t_{\text{LES}}} = -\left[\widetilde{u}_i + (u_i')^R\right] \frac{\partial Y_k^n}{\partial x_i}$

Flame surface

- Filtered species obtained from the subgrid LEM field
- Reaction rate in subgrid domain requires no closure
- Model more accurate in high Re LES

Well known Limitations of LEMLES

- Sub-grid resolution constraints can lead to artificial numerical diffusion
- Large-scale laminar diffusion is ignored compared to turbulent diffusion
 asymptotic convergence to low Re molecular diffusion needed
- Triplet mapping is discrete and instantaneous whereas turbulent mixing is continuous and has a finite time-scale – sensitivity primarily at low Re
- Current LEMLES assumes pressure to be constant but can be relaxed
 - Necessary for high Mach number flows
 - Need to account for sub-grid shock motion
- New approach developed to address some of these limitations but brings some other constraints (RRLES)

RRLES v/s LEMLES

- Solve convention scalar transport equations along with LES
- Conventional SGS closure for scalar subgrid flux
- Reaction Rate obtained using subgrid LEM locally
- RRLES advantages
 - molecular diffusion recovered in the limit of laminar and DNS limit
 - Reaction rate within the subgrid LEM requires no explicit closure
- RRLES disadvantages
 - cannot capture counter-gradient turbulent scalar transport
 - Subgrid initialization recovers only mean scalar features

Aerospace Engineering

Reconstruction of LEM Fields

- Three strategies considered so far:
 - Use resolved scalar gradient
 - Uniform: No stirring can occur
 - Random using Gaussian distribution with algebraic model for variance
- Posteriori assessment showed gradient strategy is better but this needs more studies
- Higher moments may need to be considered

Conditional variation of filtered reaction rate of fuel w.r.t. progress variable

Initially reconstructed and evolved LEM solution

Single Grid RRLES Formulation

Subgrid scalar flux modeled using gradient eddy diffusivity approach:

$$\mathcal{Y}_{k,i}^{\text{sgs}} = -\overline{\rho} D_t \frac{\partial \widetilde{Y}_k}{\partial x_i}$$

Species transport equations expressed as:

$$\frac{\partial \overline{\rho} \widetilde{Y}_k}{\partial t} + \frac{\partial}{\partial x_i} \left[\overline{\rho} \left(\widetilde{Y}_k \widetilde{u}_i - \frac{\nu_t}{Sc_t} \frac{\partial \widetilde{Y}_k}{\partial x_i} \right) \right] = -\frac{\partial}{\partial x_i} \left[\overline{\rho} \widetilde{Y}_k \widetilde{V}_{k,i} \right] + S_k \quad k = 1, 2, \dots, N_s$$

$$S_k = -\frac{\partial \theta_{k,i}^{\rm sgs}}{\partial x_i} + \overline{\dot{\omega}}_k$$

Explicitly modeled LEM term

Aerospace Engineering

LEMLES v/s Single-Level RRLES

Aerospace Engineering

FPV-LES Approach

• Filtered equation for progress variable (c)¹⁻³:

$$\frac{\partial \bar{\rho} \tilde{c}}{\partial t} + \nabla . \left(\bar{\rho} \tilde{u}_i \tilde{c} \right) = \nabla . \left(\bar{\rho} (\tilde{\alpha}_c + \alpha_T) \nabla \tilde{c} \right) + \bar{\rho} \overline{\dot{\omega}}_c$$

• Subgrid fluctuations in *c* is accounted by:

$$\tilde{Y}_k = \int Y_k(c) \,\tilde{P}(c) dc$$

- Here, $Y_k(c)$, T(c), and $\overline{\dot{\omega}}_c(c)$ are obtained from flamelet library and $\tilde{P}(c)$ is assumed to be a beta PDF⁴
- Compressible flamelet models also exist but the current implementation is still the classical one

SDR-LES Approach

• Filtered transport equation for a progress variable

$$\frac{\partial \rho \tilde{c}}{\partial t} + \nabla . \left(\bar{\rho} \tilde{\boldsymbol{u}} \tilde{c} \right) = \nabla . \left[\bar{\rho} (\overline{D} + D_T) \nabla \tilde{c} \right] + \, \boldsymbol{\omega}_c$$

• The reaction rate closure is attained through an algebraic model:

$$\overline{\dot{\omega}}_c = \frac{2}{2C_m - 1} \overline{\rho} \widetilde{N}_c$$
, where $\widetilde{N}_c = \overline{D} \nabla \widetilde{c} \cdot \nabla \widetilde{c} + \widetilde{\epsilon}_c$

• Different approaches exist for modeling of SGS scalar dissipation rate:

$$\begin{split} \mathbf{Conventional^{1}} & \tilde{\epsilon}_{c} = \overline{D}_{\mathrm{T}} \, \nabla \tilde{c} . \, \nabla \tilde{c} \\ \mathbf{Extended^{2,3}} & \tilde{\epsilon}_{c} = \mathcal{F} \left[2K_{c} \frac{S_{L}}{\delta_{th}} + \, (C_{3} - \tau C_{4} D a_{\Delta}) \left(\frac{2u'}{3\Delta} \right) \right] \frac{\sigma_{c,sgs}^{2}}{\beta_{c}} \end{split}$$

- Conventional closure is used but extended closure is being evaluated for $\tilde{\epsilon}_c$
- Extended model involves parameters some of which can be tuned or obtained dynamically and it involves flame speed, flame thickness, local SGS velocity scale

Aerospace Engineering

FPV-RRLES and SDR-RRLES Workflow

1/8

Aerospace Engineering RRLES of Flame-Turbulence

Case

Closure

• Interaction of premixed methane flame with decaying isotropic

turbulence¹ ($\phi = 0.8, T_{ub} = 570 \text{ K}$)

		··· x ··· y ···· 2		
A ₁	DNS	384 ³	10	6.2
A ₂	LEMLES	96 ³	10	6.2
A ₃	RRLES	96 ³	10	6.2
A ₄	QLLES	96 ³	10	6.2
B ₁	DNS	512 ³	50	9.6
B ₂	LEMLES	128 ³	50	9.6
B ₃	QLLES	128 ³	50	9.6
B₄	RRLES	128 ³	50	9.6

 $N_x \times N_y \times N_z$ | u'/S₁

and $\tilde{c} = 0.99$

Georgia || College of

Tech () Engineering

Corrugated flamelet¹

*Thin reaction zone*¹

T 2200 1874 1548 1222 896 570

Broken reaction zone¹

*Ranjan R, Muralidharan B, Nagoaka, Y., and Menon S, CST, 2016, VOL. 188, NO. 9, 1496–1537

RRLES of Flame-Turbulence Interactions

• Conditioned mean of Methane reaction rate

- Lower Re
 - RRLES approach asymptotes to QLLES (Quasi Laminar)
 - Linear Eddy Model has a known problem at low Re
- Higher Re (but is still relatively low) RRLES predicts better reaction rates

Comparison of Different Closures

Aerospace Engineering

Focus on TRZ Flame Only

- TRZ regime $(\frac{u'}{S_L} = 10, \frac{l}{\delta} = 10), \ \varphi = 0.8,$ T_{ref}= 570 K, P_{ref} = 1 atm
- Eight simulations performed with 2 DNS reference for FRC and FPV approaches
- 12 LEM cells per LES cell considered for multi-scale approaches
- 4-step and 8-species mechanism considered for FRC, and FPV table generated using same mechanism
- Results compared after 2 eddy turnover time (τ₀)

Case	N _x x N _y x N _z	CPU Hrs for $2 au_0$	
DNS-FRC	384 ³	XX	
DNS-FPV	384 ³	XX	
LEMLES	96 ³	1972	
RRLES	96 ³	1861	
LES-FPV	96 ³	164	
LES-SDR	96 ³	148	
RRLES-FPV	96 ³	445	
RRLES-SDR	96 ³	445	

Aerospace Engineering

Averaged Flame Structure

- Averaged flame structure obtained by averaging along transverse directions
- Overall, all methods capture mean flame structure reasonably well, with differences evident in preheat and post-flame regions
- Quantitative differences exist in mean flame location and thickness
 - Effect of chemistry modeling
 - Effect of turbulence-chemistry modeling

Progress Variable

Aerospace Engineering

Statistics of Filtered Reaction Rate

- Effect of chemistry modeling
 - DNS-FPV show higher RR in the prog. var. conditional space compared to DNS-FRC
 - Physical space RR can be considered a manifestation of the prog. var. space RR

Reaction Rate (RR) in Prog. Var Space

Reaction Rate (RR) in Physical Space

Aerospace Engineering

Statistics of Filtered Reaction Rate

- Effect of chemistry modeling
 - DNS-FPV show higher RR in the prog. var. conditional space compared to DNS-FRC
 - Physical space RR can be considered a manifestation of the prog. var. space RR

- Effect of turbulence-chemistry modeling
 - RRLES predictions better than LEMLES³

Reaction Rate (RR) in Prog. Var Space

¹Ma et al., CF 161, (2014), ²Gao et al., CST 186, (2014) ³Ranjan et al., CST 188, (2016) Reaction Rate (RR) in Physical Space

Aerospace Engineering

Statistics of Filtered Reaction Rate

- Effect of chemistry modeling
 - DNS-FPV show higher RR in the prog. var. conditional space compared to DNS-FRC
 - Physical space RR can be considered a manifestation of the prog. var. space RR
 - SDR RR not tabulated (unlike FPV)
 - demonstrate wider prog. var.
 space distributions^{1,2} and lower
 RR magnitudes

Effect of turbulence-chemistry modeling

RRLES predictions better than LEMLES³

Reaction Rate (RR) in Prog. Var Space

Reaction Rate (RR) in Physical Space

Aerospace Engineering

Statistics of Filtered Reaction Rate

Effect of chemistry modeling

- RRLES-FPV show higher RR in the prog.
 var. conditional space compared to RRLES
 leading to a closer match to FRC-DNS
- Physical space RR can be considered a manifestation of the prog. var. space RR
- SDR RR not tabulated as a function of *c* (unlike FPV); demonstrate wider prog. var. space distributions^{1,2} and lower RR magnitudes
- Effect of turbulence-chemistry modeling
 - RRLES predictions better than LEMLES³
 - RRLES-FPV and RRLES-SDR yield better predictions compared to LES-FPV and LES-SDR due to the subgrid LEM modeling

Reaction Rate (RR) in Prog. Var Space

Reaction Rate (RR) in Physical Space

Aerospace Engineering

Statistics of Filtered Reaction Rate

• Effect of chemistry modeling

- DNS-FPV and RRLES-FPV show higher RR in the prog. var. conditional space compared to their FRC variants DNS-FRC and RRLES
- Physical space RR can be considered a manifestation of the prog. var. space RR
- SDR RR not tabulated as a function of *c* (unlike FPV); demonstrate wider prog. var. space distributions^{1,2} and lower RR magnitudes

Effect of turbulence-chemistry modeling

- RRLES predictions better than LEMLES
- RRLES-FPV and RRLES-SDR yield better predictions compared to LES-FPV and LES-SDR due to the subgrid LEM modeling

Reaction Rate (RR) in Prog. Var Space

Reaction Rate (RR) in Physical Space

Average Flame Structure

- Average flame structure in physical space captured consistently with all models at different pressures
- Effect of chemistry modeling (FPV vs FRC) in preheat and flame regions in terms of differences in gradient tend to reduce with increase in pressure: role of smallscale turbulence decreases
- Major difference observed with SDR closure, which is related to differences in prediction of filtered source term across flame brush: difference increases with increase in pressure

Progress variable variation in physical space

³⁵

Premixed Flame Turbulence: Summary

- RRLES allows any reaction rate closure to be included in the subgrid
- FPV/SDR based approaches are cost effective alternatives to FRC
- Qualitatively, all approaches reasonably capture flame features, but quantitative differences are also observed
- Further studies underway including the more recent SDR models
- Methodology is generic and hence can be used for more complex problems

b Kor

Application to Model Combustor

Aerospace Engineering

LEMLES of Combustors: GE LM6000

- premixed swirl combustor
 - Inlet T = 644 K, P = 6 bar, $\phi = 0.6$
 - Flame corresponds to TRZ regime
- Computational grid
 - 524 blocks., 2.2 M grid points
 - Resolution: 0.2-0.6 mm
- Adiabatic temperature/no-slip walls and Char inflow/outflow BC
- Chemistry: 13-species and 73-step¹
- LEMLES with experiments where coflow is cold done earlier
- Models assessed by comparing with LEMLES results with hot co-flow of equilibrium products

Schematic of combustor and computational grid

Case	CPU Hrs for a flow through time (Relative Speedup)	
QLLES	971 (2.22)	
LEMLES	5580 (0.85)	
RRLES	4270 (1.00)	
FPV-LES	971 (4.86)	
SDR-LES	858 (5.50)	
FPV-RRLES	1890 (2.50)	
SDR-RRLES	2120 (2.23)	

¹Sankaran et al. (2007)

Aerospace Engineering

Reacting Flow Features

- Flame holding occurs in shear-layers due to swirling flow, which creates vortex breakdown bubble (VBB)
- Highly unsteady behavior of VBB observed
- Interaction of shear layers occurs with co-flow
- Progress variable field appears to be correlated with temperature field

Temperature iso-surface (1800 K) with contours on central plane

Progress variable overlaid with zero axial velocity curves 39

Aerospace Engineering

Validation Study

- Co-flow is set to cold conditions in order to match the experiments
- LEMLES serve as reference for assessment of other models

Mean temperature in central plane

Effect of Turbulent Combustion Modeling

- Overall very similar flame and VBB observed for all models
- Co-flow needs to be burnt solution for these studies
- LES-SDR and RRLES-SDR still being evaluated

Mean CH₄ mass fraction contour overlaid with zero mean axial velocity curves

Mean temperature overlaid with zero mean axial velocity curves

Effect of Turbulent Combustion Modeling

- Axial centerline and VBB not affected by turbulence/chemistry modeling
- Differences in the temperature across the flame visible when zoomed in
 - Behavior similar between LEMLES and RRLES
 - RRLES-FPV closer to RRLES compared to LES-FPV

Mean axial centerline velocity

Mean axial velocity at $x/D_0 = 0.18$

Mean centerline temperature

Mean temperature x/D₀ = 0.18

GE LM6000 Combustor: Summary

- All modeling approaches give similar results for global quantities such as temperature and axial velocity
 - flame is highly turbulent and close to thin flame assumption
- Differences still exist locally and need further assessment
 - Similar flame structure for LEMLES and RRLES
 - RRLES-FPV closer to RRLES then LES-FPV
- Compressible FPV and SDR models still need to be assessed
- Computations are very fast and all cases doable in matter of hours

National Jet Fuels Combustion Program

Aerospace Engineering

LES of UDRI Rig

- Swirl spray combustor hosted at AFRL, Dayton^{1,2}
- Representative of a real gas turbine combustor
 - 3 swirlers, 14 dilution jets, Multiple effusion cooling holes

Inlet Air	391.4 g/s, 394 K
Fuels	Cat A2 (2.55 g/s, 322 K), Cat C1 (2.50 g/s, 322 K)
Pressure	206 kPa
Swirlers	Radial (24 vanes) Inner/outer axial (30 vanes)

Complete Computational Domain

Combustor ¹L. Esclapez et al., Combust. Flame 181 (2017) ²M. Colket et al., AIAA J., 55(4), 2017

Chemistry and Fuel Effects Modeling

- Real fuels contain thousands of components, impractical to track all
- Reduced HyChem approach with lumped kinetic parameters derived from experiments, and further reduction of the mechanism to a non-stiff variant
- Partially stirred reactor (PaSR) as turbulent combustion closure
- Non-reacting (NR) simulation carried out for initial verification
- A2 (~C₁₁H₂₂) conventional jet fuel, C1 (~C₁₃H₂₈) alternate jet fuel
- Reacting simulations are very costly due to large number of species and reaction steps (~ 2 months on 2100 processors)
- 21 million structured cells for the entire test rig

Case Name	Fuel	Equivalence Ratio	CPU-Hours for one flow- through (20 ms)	Number Species	Number Steps
NR	-	Non-reacting	0.04 million	-	-
A2 0.096	A2	0.096 (NBO)	0.80 million (20 x NR)	31	202
C1 ^{0.096}	C1	0.096 (NBO)	0.64 million (16 x NR)	27	182

Computational Combustion Lab Aerospace Engineering **Sensitivity to Spray Injection**

- Injection A: Narrow truncated hollow cone
- **Injection B:** Wide truncated hollow cone
- **Injection C:** Hollow cone
- Dense spray conditions are unknown
- Dilute distribution defined based on downstream measurements but initial development unknown
- Can this be sufficient to predict LBO?

28

-24 -50

Flow/Flame Features

Center-slice: velocity mag.

Center-slice: Temperature

KE spectra in shear layer

Combustion Chamber: Q-Criterions

Aerospace Engineering

Validation Against Experimental Data

0.2

٩,

-0.2

-0.4

¹Panchal et al., AIAA JPC, AIAA-2018-4684, 2018

0

0.2

OH* count

Expt. OH PLIF

 $x/D_{0}^{0.4}$

0.6

Challenges and Ongoing Work

- Partially premixed burning
- Complex effects of FRC
 - Pyrolysis process
 - Localized extinctions
 - auto-ignitions
- Finite-rate computational cost very high – even more with LEMLES/RRLES
- Transient effects need a long time to settle down
- Goal is to predict LBO due to fuel chemistry effects
 - Still not achieved!!

Aerospace Engineering

GTech LBO simulation still unresolved

Future Prospects?

- Many challenges for real engine relevant transient problems
 - CI, LBO, cold start, altitude restart are some key challenges for design
 - Realistic configurations have many uncertainties in BC and IC that experimental studies cannot isolate or define
 - Computational tools can be used to assess but can lead to many dead ends
 - Brute force simulations are expensive but doable but huge dataset
 - Need big data tools and co-processing to analyze on-the-fly
 - Simplified models (e.g., FPV/SDR) may work for some applications but need reliable co-effective methods for spray partially premixed systems
 - Spray BCs are nearly impossible to