UK Turbulent Reacting Flows Consortium (UKCTRF) Annual Meeting, University of Cambridge, 12-13 September, 2018

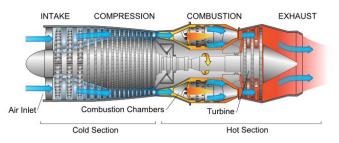
Response of heat release to equivalence ratio variations in high Karlovitz premixed H₂/air flames at 20 atm: a DNS study

Xujiang Wang, Tai Jin, K. H. Luo

Department of Mechanical Engineering, UCL

12th September, 2018

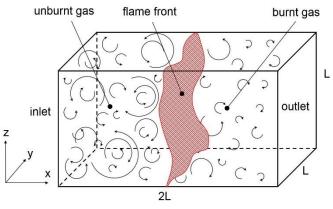
Background

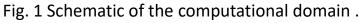

Numerical method and computational cases

Results and discussion

Conclusions and future work

- □ Lean premixed combustion has wide-ranging applications in industrial devices with the advantage of low NOx emission. In modern gas turbines, typical equivalence ratios at base load are in the range 0.45-0.6 [1].
- Turbulent flames in gas turbines are characterised by intense turbulence intensity and high pressure.
- Turbulent lean premixed flames are susceptible to equivalence ratio oscillation, which is one of the most significant mechanisms contributing to combustion instabilities.
- Objectives: To study the characteristics of lean H₂/air flames with various equivalence ratios under conditions relevant to gas turbines (High Ka, High P) by three-dimensional direct numerical simulations.


[1] Jansohn P. Modern gas turbine systems: High efficiency, low emission, fuel flexible power generation. Elsevier; 2013.



Direct numerical simulation

- DNS code: PENCIL CODE[1]
- □ Spatial discretization six-order compact
 - finite difference schemes
- □ Time advancement low-storage third
 - order Runge-Kutta (RK3-2N)
- Chemistry calculation Livermore Solver for ODE (LSODE)
- □ H_2/O_2 chemical mechanism developed by Li et al. (2004)

Boundary conditions:

□ Cross-flow direction: periodic

boundary conditions

□ Inlet/outlet: NSCBS

[1] Babkovskaia N, Haugen NEL, Brandenburg A. A high-order public domain code for direct numerical simulations of turbulent combustion. J Comput Phys 2011;230(1):1-12.

Computational Cases

Pressure=20atm

Table 1. Simulation parameters.

Case	А	В	С
φ	0.4	0.5	0.6
S _L (cm/s)	1.66	6.81	21.16
δ _L (cm)	2.54E-02	8.3E-03	3.3E-03
u' (cm/s)	177	664	1941
v (cm²/s)	9.05E-03	9.34E-03	9.62E-03
l _t (cm)	2.54E-02	8.3E-03	3.3E-03
Δx (μm)	4.96	3.24	1.29
Re	497	590	666
Ка	2376	2373	2368

Turbulent Reynolds number $\operatorname{Re} = u'l_t / v$ Karlovitz number $\operatorname{Ka} = \left(u'^3 / vl_t \right)^{1/2} / \left(S_L / \delta_L \right)$

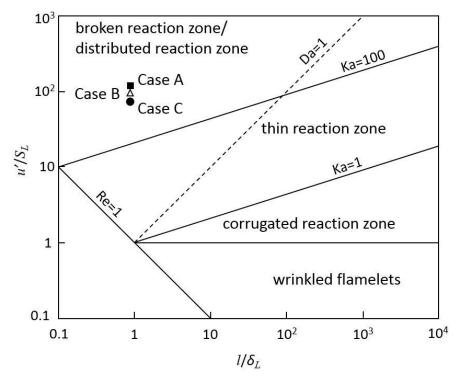


Fig. 2 Turbulent combustion regime diagram

Initial condition:

- Pre-generated 1D flame + turbulence
- 26 grids across the flame thickness
- Time step is determined by CFL condition: 1e-10~2.5e-9

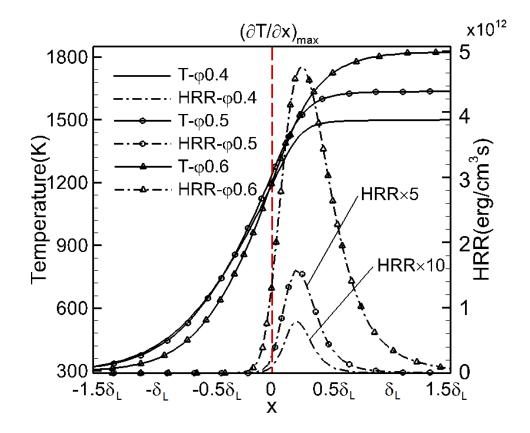


Fig.3 Laminar flame structures

- HRR is significantly increased when the equivalence ratio increases
- The burnt gas temperature increases from 1530 K to 1836 K
- The equivalence ratio increases, the reaction zone is obviously broadened.
- The scaled temperature gradient is larger under higher equivalence ratio

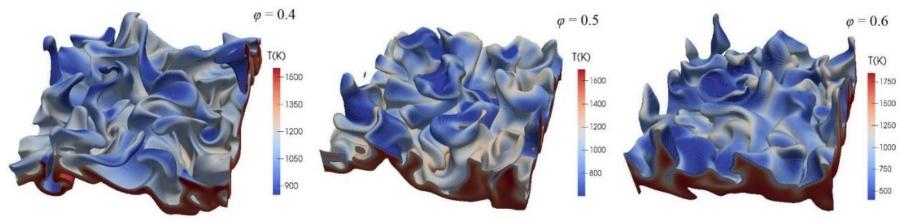
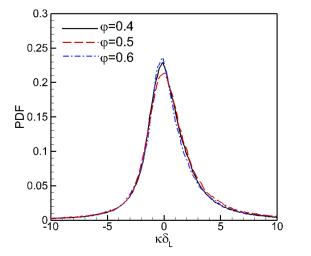



Fig. 4 Reaction zone structures at different equivalence ratios.

- the flame fronts are seriously wrinkled and stretched by turbulences
- □ Characterized by the same Ka, the flame front structures of the three flames are quite similar.
- The Pdf of mean curvatures of flame fronts are consistent.

Fig.5 PDFs of mean curvatures of flame fronts

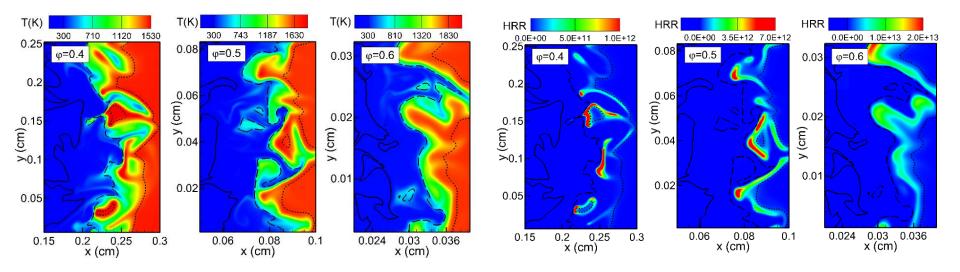


Fig. 6 2D snapshot of reaction zone structures at different equivalence ratios. The solid, dashed and dotted black lines correspond to c = 0.01, 0.5 and 0.99, respectively.

- \Box The majority of heat release happens in region 0.5 < c < 0.99
- ❑ the thickness of high-HRR regions is obviously increased, and the gradient is correspondingly decreased. In flame C, the high-HRR regions almost fill up the zone 0.5 < c < 0.99, whereas there are only narrow strips in flame A.</p>

Results: flame mean statistics

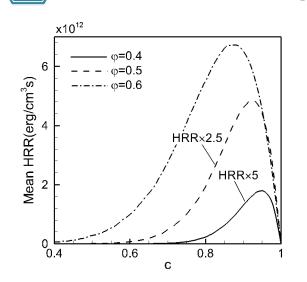


Fig.7 Mean heat release versus progress variable for turbulent flames

- the heat release of turbulent flames is enhanced, and the reaction layer is relatively broadened under high equivalence ratio.
- the extent of enhancement is reduced at high equivalence ratio.
- obvious heat release is observed from c = 0.4 for case φ = 0.6, while it happens after c = 0.7 for case φ = 0.4.

Case	HRR _{max_1D} (erg/cm ³ s)	Mean HRR _{max_3D} (erg/cm ³ s)	$\delta_{f_{1D}}$	δ _{f_3D}
Α	7.90E10	3.69E11	0.54 δ _L	1.25 δ _L
В	7.87E11	1.95E12	0.65 δ _L	1.63 δ _L
С	4.68E12	6.73E12	δ	1.86 δ _L

Table 2 Characteristic parameters of reaction zones of laminar and turbulent flames

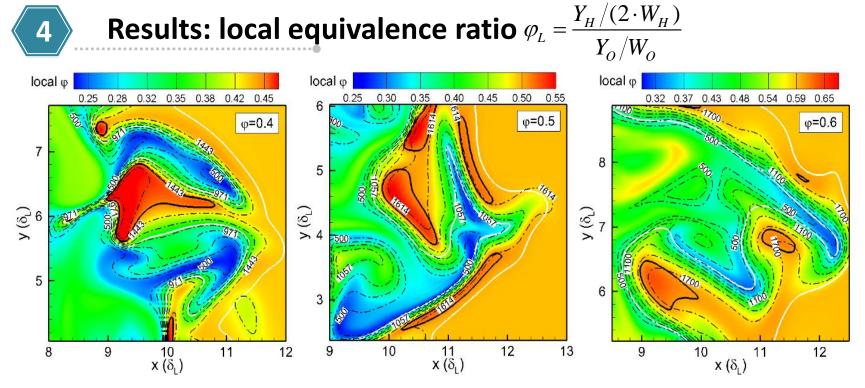
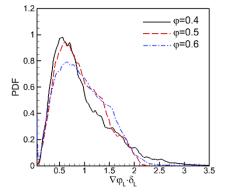



Fig.8 Two-dimensional slices of the reaction zone coloured by local equivalence ratio

- $\Box \varphi_L$ is significantly lower than the fresh gas φ in the upstream near the reaction layer
- $\Box \varphi_L$ trenches and plateaus are situated on two sides of the left boundary of reaction zone
- With increasing equivalence ratio, the difference of gradients is reduced

Results: local equivalence ratio

4

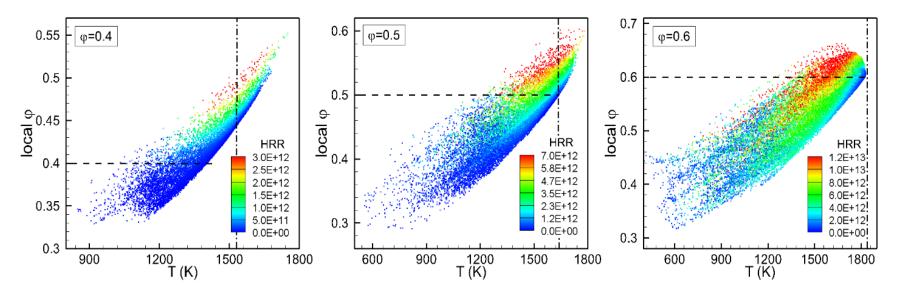


Fig.10 Scatter plots of local temperature and local equivalence ratio in the reaction zone.

- □ The scatter distribution shows a positive correlation between φ_L and temperature
- Hot spots with temperature higher than the adiabatic temperature are observed under ultra-lean conditions

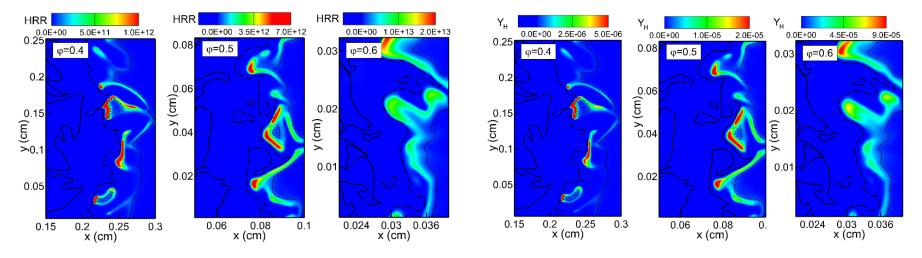


Fig.11 Two-dimensional snapshots of regions around reaction zones showing heat release rates, and H mass fraction for the cases with equivalence ratios 0.4, 0.5 and 0.6. The solid, dashed and dotted black lines correspond to c = 0.01, 0.5 and 0.99, respectively.

- In experimental studies, the heat release regions cannot be directly measured
- the contour of H mass fraction agrees well with the contour of HRR
- H could be used as a reliable HRR marker in high-pressure lean flames with varying equivalence ratios?

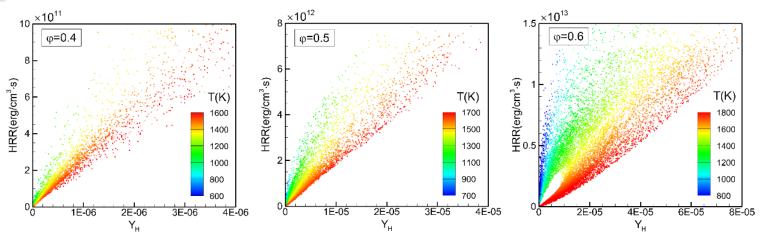


Fig.12 Scatter plots of H mass fraction and heat release

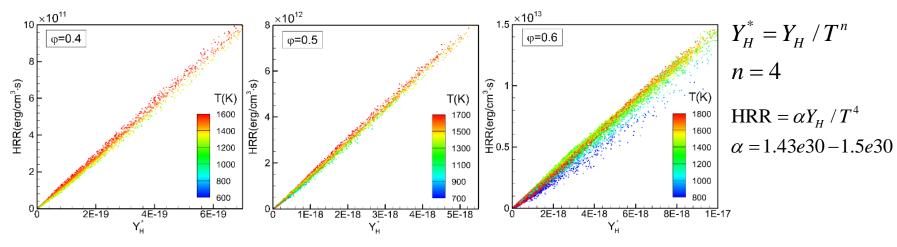


Fig.13 Scatter plots of scaled H mass fraction and heat release

Conclusions

6

- The characteristics of heat release under various equivalence ratios are investigated by three-dimensional direct numerical simulations of lean H₂/air flames under conditions relevant to gas turbines.
- □ Under different lean conditions (φ = 0.4, 0.5, 0.6), the turbulent flame fronts show similar topological structures for the three cases under the same Karlovitz number.
- □ Trenches of local equivalence ratio φ_L are located at concave structures outside the reaction zone, while φ_L plateaus are situated at convex structures inside the reaction zone.
- With increasing equivalence ratio, the difference of gradients in convex and concave regions is reducing.
- $\Box \varphi_L$ is found to be significantly higher than mixture φ under ultra-lean conditions, resulting in hot spots in the reaction zone.
- Radical H could be used as a perfect HRR marker when it is scaled by temperature.

Thank you!

The simulations were performed on ARCHER (UK National Supercomputing Service)

The simulations were supported by UK Turbulent Reacting Flows Consortium (UKCTRF)

