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What Is particle precipitation?

What are in common in these products?

How are they made?

—> Precipitation: A Particulate Process

Mixing reactants
Supersaturated Solution

Reaction between chemical species

Phase change
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General Particulate Processes

4 Mechanisms -> Poly-disperse phase
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Particle size matters !

« The product quality usually correlates with the particle size
distribution (PSD)

« Important quantity for manufacturers

* Interested in predicting and controlling the PSD

L.Metzger, et.al (2016)
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Challenges

Precipitation is highly sensitive to the local supersaturation
— Fast changing kinetics

Fast reaction-precipitation
— Small precipitation time scale

Turbulent fluctuations alters the local composition
— Small mixing length scale

- PSD is changing rapidly in space and in time
(especially when the flow time scale and kinetics are of similar order)
—> Local information can hardly be captured by experiments / resolved by simple numerical methods




Imperial College
London

The motivation

What are the effects of mixing on the precipitation process ?
*  How the PSD is influenced by local effects ?

« Develop a coupled DNS-PBE approach for simulating particulate
process in turbulent flow

« Case study: Apply the coupled DNS-PBE approach to the nano- (dfieg_;"n‘;;, ";‘;"_‘__"19 ;‘::;*
particle precipitation of BaSO, in a T-mixer (H.-C. Schwarzer,
2004) H.-C. Schwarzer, et. Al (2004)
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What this project is about?

/ Direct Numerical Simulation Population Balance

3 0.5M BaCI2 + 0.33M HZSO4 (Perfectly Stirred System)

EaR e ) Tl T

Pl [-e—teenss
Pl B -t=15e05 s
=% 1-Be0S s
T —0—1=15e-04 s |
DA e15e03s

D |—t—t=50e-03s

Pantarhei

BaSO, Precipitation in a T-mixer
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Direct numerical simulation (DNS)

u Inlet
* N-S equations: — +u-Vu=-=VP +vV%u
ot BaCl2 wep €= {2504
n 10.001
dC; % Impingement
- Transport for ions: — 4+ u-VC =—V2C + ngement . I oo
ot Sc 1 10.003

—+0.004

* Fraction step |

_ Mixing
- BDF3 for time advancement Channal 10,006
« Implicit diffusion and explicit convection 2 10,007
- -+0.008

Outlet

« Cartesian mesh 10.009

« 21 million cells
* Flow field is fully resolved to Kolmogorov scale




Evolution of Number density distribution in time
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A
ny (L)
London n; (L, t)dL:: number of
. . particles in (L,L +dL) att
Population Balance Modelling
o Particle number n; (L, t + dt)dL:number of
. . . . particles in (L,L + dL) at t+dt
— Discretised into intervals
— Number density

¥

dN (L) L L+dL

nL (L) — VdL S. Rigopoulos (2010)

General form of Population Balance Equation (PBE) for particulate processes

anL aG ‘nL

— . _ _ . N Total number of particles

ot + oL — BO + Baggl + Bdlsr Daggl DdlST n, Number density

L Size interval (Class)
7 7 ’ T T ‘ \ B, Nucleation term
B Generation term
Transient Growth Nucleation Generation term Generation Destruction Destruction D Destruction term

term term term due to term due to term due to term due to G Growth rate
aggregation breakage aggregation breakage

In the current case study, the system is dominated by nucleation and growth only
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Transported PBE

* Coupling with the flow
* Assume particles as tracer

Convection
term

anL+l Vn, +
It u ny

aG -n;, v

V2 B
dL Sc L+ bo

|

Diffusion
term

*  PBE is solved locally in each cell together with the DNS
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Number transport

A
| \

an] V] 2 aGTl]
E+u-\7nj=§\7 nj+BO_6—L

« The flow field is captured by DNS, which can be considered as fully resolved
« The only modelling terms are the growth and nucleation rates
* These kinetics depends on the supersaturation (driving force) and are non-linear
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The kinetics Jr T =g Vi Bo——5
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Discretisation on the transported PBE

ony,(j) . [% . an -1y, (j)
T +u- VnL(]) = §Van(]) + Bo5(L] — LTL‘LLC) — aL]

« Fractional step method

- BDF3 for time advancement

- Explicit convection and diffusion terms are extrapolated with 3" order scheme
* TVD scheme for growth discretization

« Particle size range is discretised into 40 intervals (j = 1 - 40 ) with an exponential grid
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Flow field & Mixing

- Re=1135

The flow in T-mixer can be considered as turbulent
when Re>400 (Telib, et al., 2004)

* Helical Pattern

* Intense mixing at
impingement zone

* Fastest mixing time scale in
the order of 10-°

Streamline

Micro-mixing (Engulfment) time scale

(characterizes the timescale of the most energetic vortex)
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Reactant

The mixing of reactants _
concentration

Bo++ S04
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The local kinetics

Supersaturation
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The local kinetics

Supersaturation
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The PSD (cont’d)
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Conclusion
«  DNS — PBE coupled approach on BaSO, precipitation
* Local variation in the reactant leads to different local dominating mechanism

« The impingement zone is the most critical region and it determine the resultant PSD
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Supersaturation

Moment of distribution

] 35”|'|Dl|||J||612;p||1|:||QTQ':?'1]|-uﬂlzM
1st Moment 0t Moment
(Crystal volume per unit volume) (No. of particle per unit volume)

M1V MOL
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The PSD (cont'd)
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Intensity of Segregation E

(a measure of evenness) an
Eos
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Computational cost
* Expensive but possible on HPC
« High resolution

«  Will consider simplifying this to resolve zones with strong mixing only
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Intensity of segregation

A measure of evenness

1 - Fully segregated l M(XA (1 — X8)) = Tl — Xa)
0 — Homogeneously mixed
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Flow field obtained from DNS
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Flow field obtained from DNS (cont’d)

X/H=2.75

x/H=0.25

x/H=0




Imperial College
London

Compare with experimental PIV results!4

1.005e-02
| |

[4] F. Schwertfirm, J. Gradl, H. Schwarzer, W. Peukert and M. Manhart, “The low Reynolds number turbulent flow and mixing in a confined impinging jet reactor,” International Journal of Heat and
Fluid Flow, vol. 28, pp. 1429-1442, 2007.
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Velocity Profile

(preliminary comparison with experimental results!4])

Mean velocity profiles over the axis of the feeding pipes
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[4] F. Schwertfirm, J. Gradl, H. Schwarzer, W. Peukert and M. Manhart, “The low Reynolds number turbulent flow and mixing in a confined impinging jet reactor,” International Journal of Heat and

Fluid Flow, vol. 28, pp. 1429-1442, 2007.




