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What is particle precipitation?

What are in common in these products? 

How are they made?

→ Precipitation: A Particulate Process

Mixing reactants

Supersaturated Solution 

Reaction between chemical species

Phase change
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General Particulate Processes

Nucleation

Growth

Aggregation

Breakage

4 Mechanisms  → Poly-disperse phase
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Particle size matters !

• The product quality usually correlates with the particle size 

distribution (PSD)

• Important quantity for manufacturers

• Interested in predicting and controlling the PSD

L.Metzger, et.al (2016)
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Challenges

• Precipitation is highly sensitive to the local supersaturation

– Fast changing kinetics

• Fast reaction-precipitation

– Small precipitation time scale

• Turbulent fluctuations alters the local composition 

– Small mixing length scale

• → PSD is changing rapidly in space and in time

(especially when the flow time scale and kinetics are of similar order)

• → Local information can hardly be captured by experiments / resolved by simple numerical methods
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The motivation

• What are the effects of mixing on the precipitation process ?

• How the PSD is influenced by local effects ?

• Develop a coupled DNS-PBE approach for simulating particulate 

process in turbulent flow

• Case study: Apply the coupled DNS-PBE approach to the nano-

particle precipitation of BaSO4 in a T-mixer (H.-C. Schwarzer, 

2004)

0.5M 
BaCl2

0.33M 
H2SO4

H.-C. Schwarzer, et. Al (2004)
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What this project is about?

Direct Numerical Simulation Population Balance

BaSO4 Precipitation in a T-mixer

Coupling
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• N-S equations:

• Transport for ions:

• Fraction step

• BDF3 for time advancement

• Implicit diffusion and explicit convection

• Cartesian mesh

• 21 million cells

• Flow field is fully resolved to Kolmogorov scale

Direct numerical simulation (DNS)

𝜕𝒖

𝜕t
+ 𝒖 ∙ 𝛻𝒖 = −𝛻𝑃 + 𝜐𝛻2𝒖

𝜕𝐶𝑖
𝜕t

+ 𝒖 ∙ 𝛻𝐶𝑖 =
𝜐

Sc
𝛻2𝐶𝑖 + 𝑟𝑖
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Population Balance Modelling

• Particle number

– Discretised into intervals

– Number density

– General form of Population Balance Equation (PBE) for particulate processes

In the current case study, the system is dominated by nucleation and growth only

Evolution of Number density distribution in time

Transient 

term
Generation term 

due to 

aggregation

Destruction 

term due to 

aggregation

N Total number of particles

𝑛𝐿 Number density

L Size interval (Class)

B0 Nucleation term

B Generation term

D Destruction term

G Growth rate

𝑛𝐿 𝐿 =
𝑑𝑁(𝐿)

𝑉𝑑𝐿

𝑛𝐿 L

L   L+dL

𝑛𝐿 L, 𝑡 𝑑𝐿

𝑛𝐿 L, 𝑡 + 𝑑𝑡 𝑑𝐿:number of

(𝐿, 𝐿 + 𝑑𝐿) at t

(𝐿, 𝐿 + 𝑑𝐿) at t+dt

Growth 

term

Nucleation 

term

Generation 

term due to 

breakage

Destruction 

term due to 

breakage

𝜕𝑛𝐿
𝜕t

+
𝜕𝐺 ∙ 𝑛𝐿
𝜕𝐿

= 𝐵0 + 𝐵𝑎𝑔𝑔𝑙 + 𝐵𝑑𝑖𝑠𝑟 − 𝐷𝑎𝑔𝑔𝑙 − 𝐷𝑑𝑖𝑠𝑟

S. Rigopoulos (2010)
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𝜕𝑛𝐿
𝜕t

+ 𝒖 ∙ 𝛻𝑛𝐿 +
𝜕𝐺 ∙ 𝑛𝐿
𝜕𝐿

=
𝜐

Sc
𝛻2𝑛𝐿 + 𝐵0

Transported PBE

• Coupling with the flow

• Assume particles as tracer

• PBE is solved locally in each cell together with the DNS

Convection 

term

Diffusion 

term
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• The flow field is captured by DNS, which can be considered as fully resolved

• The only modelling terms are the growth and nucleation rates

• These kinetics depends on the supersaturation (driving force) and are non-linear

𝜕𝑛𝑗
𝜕t

+ 𝒖 ∙ 𝛻𝑛𝑗 =
𝜐

Sc
𝛻2𝑛𝑗 + 𝐵0 −

𝜕𝐺 ∙ 𝑛𝑗
𝜕𝐿

Source term

Nucleation Growth

Semi-empirical relations

Number transport
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The kinetics
S = γ±

𝐶𝐵𝑎2+ 𝐶𝑆𝑂42−

𝐾𝑠𝑝

Supersaturation

τnuc =
𝑛 𝐿 𝑑𝐿

𝐵0

τG =
𝑘𝑣 𝐿

3𝑛 𝐿 𝑑𝐿

𝑘𝑎 𝐺 𝐿 𝐿2𝑛 𝐿 𝑑𝐿

Precipitation timescales

B0 = 1.5𝐷 𝐾𝑠𝑝𝑺𝑁𝐴

7
3

𝛾

𝑘𝐵𝑇
𝑉𝑚ex p −

16𝜋

3

𝛾

𝑘𝐵𝑇

3
𝑉𝑚
2

𝜐 ln 𝑺 2
G = 2

𝑆ℎ 𝐷𝛼 𝐾𝑆𝑃𝑀𝑤

𝜌𝐵𝑎𝑆𝑂4

𝑺 − 1

𝑳

Nucleation rate growth rate

𝜕𝑛𝑗
𝜕t

+ 𝒖 ∙ 𝛻𝑛𝑗 =
𝜐

Sc
𝛻2𝑛𝑗 + 𝑩𝟎 −

𝜕𝑮 ∙ 𝑛𝑗
𝜕𝐿
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Discretisation on the transported PBE

• Fractional step method

• BDF3 for time advancement

• Explicit convection and diffusion terms are extrapolated with 3rd order scheme

• TVD scheme for growth discretization

• Particle size range is discretised into 40 intervals ( j = 1 - 40 ) with an exponential grid

𝜕𝑛𝐿(𝑗)

𝜕t
+ 𝒖 ∙ 𝛻𝑛𝐿(𝑗) =

𝜐

Sc
𝛻2𝑛𝐿 𝑗 + 𝐵0𝛿(𝐿𝑗 − 𝐿𝑛𝑢𝑐) −

𝜕𝐺𝑗 ∙ 𝑛𝐿(𝑗)

𝜕𝐿𝑗
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Flow field & Mixing

• Re = 1135 
The flow in T-mixer can be considered as turbulent 

when Re>400 (Telib, et al., 2004)

• Helical Pattern

• Intense mixing at 

impingement zone

• Fastest mixing time scale in 

the order of 10-5

Micro-mixing (Engulfment) time scale
(characterizes the timescale of the most energetic vortex)

Streamline

τE = 17
𝜐

𝜀

1
2
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The mixing of reactants Reactant 
concentration
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The local kinetics

Supersaturation Growth timescaleNucleation timescale
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The local kinetics

Supersaturation Growth timescaleNucleation timescale

[s]
[s]
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The PSD

A

B

C

A

D

E

F

G H
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The PSD (cont’d)

A

B

C

DE
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Conclusion

• DNS – PBE coupled approach on BaSO4 precipitation

• Local variation in the reactant leads to different local dominating mechanism

• The impingement zone is the most critical region and it determine the resultant PSD
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Thank you
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Moment of distribution

Supersaturation

0th Moment 
(No. of particle per unit volume)

1st Moment 
(Crystal volume per unit volume)
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The PSD (cont'd)

A

F

G

H
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Intensity of Segregation
(a measure of evenness) 
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Computational cost

• Expensive but possible on HPC

• High resolution

• Will consider simplifying this to resolve zones with strong mixing only
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27

27

Intensity of segregation

• A measure of evenness

• 1 - Fully segregated

• 0 – Homogeneously mixed
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Flow field obtained from DNS

t=10 s t=140 s t=150 s t=180 s
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Flow field obtained from DNS (cont’d)

x

y
z

x/H=0

x/H=0.25

x/H=0.75

x/H=2.75

H
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Compare with experimental PIV results[4]

x/H = 0

[4]  F. Schwertfirm, J. Gradl, H. Schwarzer, W. Peukert and M. Manhart, “The low Reynolds number turbulent flow and mixing in a confined impinging jet reactor,” International Journal of Heat and 

Fluid Flow, vol. 28, pp. 1429-1442, 2007. 

x/H = 0.25

x/H = 2.75x/H = 0.75
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Velocity Profile 

(preliminary comparison with experimental results[4] )

[4]  F. Schwertfirm, J. Gradl, H. Schwarzer, W. Peukert and M. Manhart, “The low Reynolds number turbulent flow and mixing in a confined impinging jet reactor,” International Journal of Heat and 

Fluid Flow, vol. 28, pp. 1429-1442, 2007. 


