

Coupling direct numerical simulation with population balance modelling for predicting turbulent particle precipitation in a T-mixer

Hin Yan TANG¹, George PAPADAKIS², Stelios RIGOPOULOS¹

¹ Department of Mechanical Engineering, Imperial College London, UK

² Department of Aeronautics, Imperial College London, UK

What is particle precipitation?

What are in common in these products?

How are they made?

General Particulate Processes

4 Mechanisms \rightarrow Poly-disperse phase

Particle size matters !

- The product quality usually correlates with the particle size distribution (PSD)
- Important quantity for manufacturers
- Interested in predicting and controlling the PSD

L.Metzger, et.al (2016)

Challenges

- Precipitation is highly sensitive to the local supersaturation
 - Fast changing kinetics
- Fast reaction-precipitation
 - Small precipitation time scale
- Turbulent fluctuations alters the local composition
 - Small mixing length scale

- → PSD is changing rapidly in space and in time (especially when the flow time scale and kinetics are of similar order)
- \rightarrow Local information can hardly be captured by experiments / resolved by simple numerical methods

The motivation

- What are the effects of mixing on the precipitation process ?
- How the PSD is influenced by local effects ?
- Develop a coupled DNS-PBE approach for simulating particulate process in turbulent flow
- Case study: Apply the coupled DNS-PBE approach to the nanoparticle precipitation of BaSO₄ in a T-mixer (H.-C. Schwarzer, 2004)

H.-C. Schwarzer, et. Al (2004)

What this project is about?

Direct numerical simulation (DNS)

N-S equations:

 $\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\nabla P + \upsilon \nabla^2 \boldsymbol{u}$

- Transport for ions:
- Fraction step ۲
- BDF3 for time advancement
- Implicit diffusion and explicit convection
- Cartesian mesh
- 21 million cells
- Flow field is fully resolved to Kolmogorov scale

Population Balance Modelling

- Particle number
 - Discretised into intervals
 - Number density

 $n_L(L) = \frac{dN(L)}{VdL}$

General form of Population Balance Equation (PBE) for particulate processes

 $n_L(L)$

In the current case study, the system is dominated by nucleation and growth only

Transported PBE

- Coupling with the flow
- Assume particles as tracer

• PBE is solved locally in each cell together with the DNS

- The flow field is captured by DNS, which can be considered as fully resolved
- The only modelling terms are the growth and nucleation rates
- These kinetics depends on the supersaturation (driving force) and are non-linear

The kinetics

Nucleation rate

2 × 10

Supersaturation

10²

10³

Supersaturation

104

10

<u>ا</u>

Nuclei size

50 10

Nucleation rate [m⁻³s⁻1]

10⁰

10

0.01 0

C1 [koml/m³]

C2 [koml/m³]

Supersaturation

Discretisation on the transported PBE

$$\frac{\partial n_L(j)}{\partial t} + \boldsymbol{u} \cdot \nabla n_L(j) = \frac{v}{\mathrm{Sc}} \nabla^2 n_L(j) + B_0 \delta(L_j - L_{nuc}) - \frac{\partial G_j \cdot n_L(j)}{\partial L_j}$$

- Fractional step method
- BDF3 for time advancement
- Explicit convection and diffusion terms are extrapolated with 3rd order scheme
- TVD scheme for growth discretization
- Particle size range is discretised into 40 intervals (j = 1 40) with an exponential grid

Flow field & Mixing

• Re = 1135

The flow in T-mixer can be considered as turbulent when Re>400 (Telib, et al., 2004)

- Helical Pattern
- Intense mixing at impingement zone
- Fastest mixing time scale in the order of 10⁻⁵

 $\begin{array}{l} \text{Micro-mixing (Engulfment) time scale} \\ \text{(characterizes the timescale of the most energetic vortex)} \end{array} \quad \tau$

$$t_{\rm E} = 17 \left(\frac{v}{\varepsilon}\right)^{\frac{1}{2}}$$

T_Engulfment 0.1 0.05 -0.02 -0.01 -0.005 -0.002 -0.001 -0.0005 -0.0002 -0.0002 -0.0002 -0.0001

-3e-05

14

Reactant concentration

The local kinetics

16

The local kinetics

The PSD

S

<u>=</u>909.

E606.

<u>-</u>303.

0

The PSD (cont'd)

Conclusion

- DNS PBE coupled approach on BaSO₄ precipitation
- Local variation in the reactant leads to different local dominating mechanism
- The impingement zone is the most critical region and it determine the resultant PSD

Acknowledgement

- This work used the ARCHER UK National Supercomputer Service (<u>http://www.archer.ac.uk</u>) and was supported by the UK Consortium on Turbulent Reacting Flows [EP/K026801/1].
- The authors acknowledge the IChemE's Fluid Mixing Processes Special Interest Group and Syngenta for their generous financial support.

Thank you

Moment of distribution

Supersaturation

The PSD (cont'd)

Computational cost

- Expensive but possible on HPC
- High resolution
- Will consider simplifying this to resolve zones with strong mixing only

Intensity of segregation

- A measure of evenness
- 1 Fully segregated
- 0 Homogeneously mixed

$$I = \frac{\sum_{m=1}^{M} (\overline{x_A} - x_{Am})^2}{M(\overline{x_A}(1 - \overline{x_A}))} = \frac{\overline{(\overline{x_A} - x_A)^2}}{\overline{x_A}(1 - \overline{x_A})}$$

Flow field obtained from DNS

Compare with experimental PIV results^[4]

[4] F. Schwertfirm, J. Gradl, H. Schwarzer, W. Peukert and M. Manhart, "The low Reynolds number turbulent flow and mixing in a confined impinging jet reactor," International Journal of Heat and Fluid Flow, vol. 28, pp. 1429-1442, 2007.

Imperial College London Velocity Profile (preliminary comparison with experimental results^[4])

[4] F. Schwertfirm, J. Gradl, H. Schwarzer, W. Peukert and M. Manhart, "The low Reynolds number turbulent flow and mixing in a confined impinging jet reactor," International Journal of Heat and Fluid Flow, vol. 28, pp. 1429-1442, 2007.