

der Bundeswehr Universität

Effects of flame configuration on flame-wall interaction in fully developed turbulent boundary layers

Umair Ahmed^{1*}, Ilias Konstantinou¹, Nilanjan Chakraborty¹ & Markus Klein²

¹School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU ²Bundeswehr University Munich, Werner Heisenberg Weg 39, D-85577 Neubiberg,Germany

*umair.ahmed@newcastle.ac.uk

Introduction

- Flame-wall interaction (FWI) occurs in many flows of engineering interest (e.g., Spark Ignition (SI) engines and gas turbines), and modelling these events remains challenging.
- The turbulence structure is altered by the walls, and the interaction of flame elements with walls leads to modifications of the underlying combustion process.
- Spatial and temporal fluctuations of wall temperature induce thermal stresses and strongly affect combustor lifetimes.
- FWI is increasingly becoming important as new combustors are being made smaller to increase energy density and reduce weight.

Introduction

- Typical reaction rate closures in RANS and LES do not account for boundary layer in the modelling approach.
- The main objectives of the present work are :
 - i. Understand the flow flame interaction in FWI of different flame configurations in premixed turbulent combustion under isothermal wall boundary conditions.
 - ii. To understand the influence of FWI on turbulence and scalar statistics in FWI of of different flame configurations in premixed turbulent combustion.

Direct Numerical Simulation

- A well-known three-dimensional compressible DNS code SENGA+¹ is used.
- The code solves conservation equations for mass, momentum, energy and chemical species in non-dimensional form using finite difference method.
- The spatial derivatives are evaluated via a 10th order for internal points and gradually decreasing to 2nd order at the non-periodic boundaries.
- A Runge-Kutta (3rd order explicit) scheme for time advancement.
- A single step irreversible chemical mechanism is used.
- Thermo-physical properties are taken to be constant.

¹K. Jenkins, R.S. Cant Recent Advances in DNS and LES: Proceedings of the 2nd AFOSR Conference (1999)

Mathematical Background

• Some basic definitions used in the fully developed boundary layer flows are:

• Wall shear stress
$$\tau_{wall} = \mu \frac{\partial u}{\partial y}\Big|_{y=0}$$
.

• Wall friction velocity
$$u_{\tau} = \sqrt{\frac{\tau_{wall}}{\rho}}$$
.

- Reynolds number based on wall friction $Re_{\tau} = \frac{\rho u_{\tau} h}{\mu}$.
- Non-dimensional distance from the wall $y^+ = \frac{u_\tau y}{v_{wall}}$.

Non-reacting flow simulation

- $Re_{\tau} = 110$ for the non-reacting channel.
- $y^+ = 0.6$ at the wall and at least two grid points are in $y^+ \le 1.0$ region.
- Domain size $10.72h \times 2h \times 4h$.
- 1920 × 360 × 720 (approx. 0.5 billion) grid points.
- Data validated against existing DNS.
- Data is recorded in time on the (y-z)

plane.

DNS data of Tsukahara et al. is available at http://www.rs.tus.ac.jp/~t2lab/db/index.html

Reacting flow simulations

- Two flame configurations have been simulated :
 - ➤ V-flame in a turbulent channel flow.
 - > Head-on quenching in a turbulent boundary layer.
- V-flame Configuration similar to that of Alshaalan & Rutland¹ and Gruber et al.² is used.
- The Head-on quenching configuration is similar to that of Bruneaux et al.³.
- The heat release parameter in these simulations is $\tau = 2.3$.
- The wall temperature is set to that of the non-reacting air-fuel mixture.
- The flame is representative of methane $\phi = 1.0$, Le = 1.0 with $S_L/u_{\tau} = 0.7$.

¹T. M. Alshaalan, CJ Rutland Symposium (International) on Combustion 27 (1998)(1), 793-799
²A. Gruber, R. Sankaran, E. R. Hawkes, J. H. Chen Journal of Fluid Mechanics (2010), 658, 5-32
³G. Bruneaux, K. Akselvoll, T.J. Poinsot, J.H. Ferziger, Combust. Flame, 107 (1996), pp. 27-44

V-flame simulation

- V-flame is investigated in the $Re_{\tau} = 110$ channel flow with inert walls.
- The flame holder is placed in the log-layer region of the channel flow at $y^+ = 55$.
- The simulation is run for two flow through times after the initial transients have decayed.
- Progress variable is defined in terms of the fuel mass fraction.
- In the post-processing the data has been time averaged and then space averaged in the periodic (z) direction for Favre and Reynolds averaged quantities.

V-flame instantaneous behaviour

V-flame with isothermal walls

0 10 20 30 40 50 60 70 80 90 100

Q-criterion coloured by vorticity magnitude

V-flame mean flow behaviour

V-flame with isothermal walls

- Location a = x/h = 6
- Location b = x/h = 7
- Location c = x/h = 8
- Location d = x/h = 9

V-flame mean flow behaviour

- Wall shear stresses increase in the stream-wise direction.
- Local flow acceleration due to the flame leads to steeper velocity gradients at the wall.

- The trend $y^+ = u^+$ is obeyed in the viscous sub-layer.
- $T^+ = (\tilde{T}/\bar{\Phi}_{wall}) \times u_{\tau}/S_L$
- The analytical function proposed by Kays & Crawford¹ for *T*⁺ is not able to predict the correct behaviour in the log-layer region.

V-flame turbulent kinetic energy

Top Wall

- Following Bruneaux et al.¹ the turbulence related quantities are normalised by u_{τ_R} .
- TKE profiles are similar to the non-reacting case near the top wall.
- On the bottom wall TKE is significantly altered by the existence of the flame.

¹G. Bruneaux, K. Akselvoll, T.J. Poinsot, J.H. Ferziger, Combust. Flame, 107 (1996), pp. 27-44

V-flame Reynolds stresses

Top Wall normalised by $u_{\tau R}$ values

Bottom Wall normalised by $u_{\tau R}$ values

HOQ simulation

• HOQ is investigated in the $Re_{\tau} = 110$ periodic boundary layer with inert walls.

- Domain size 10.72h × h × 4h discretised on 1920 × 180 × 720 (approx. 0.25 billion) grid points.
- The simulation is run until the flame has fully quenched.
- Progress variable is defined in terms of the fuel mass fraction.

HOQ instantaneous behaviour

HOQ with an isothermal wall

Q-criterion coloured by vorticity magnitude

HOQ mean flow behaviour

- Wall shear stress decreases with time as the flame interacts with the wall.
- During the flame-wall interaction u_{τ} decreases due to a decrease in the kinematic viscosity near the wall.

- The trend $y^+ = u^+$ is obeyed in the viscous sub-layer.
- $T^+ = (\tilde{T}/\bar{\Phi}_{wall}) \times u_{\tau}/S_L$
- The analytical function proposed by Kays & Crawford¹ for T⁺ is not able to predict the correct behaviour in the log-layer region.

¹W.M. Kays, M.E. Crawford, Convective Heat and Mass Transfer, 3rd edn, McGraw-Hill, New York (1993)

HOQ turbulent kinetic energy

• Following Bruneaux et al.¹ the turbulence related quantities are normalised by u_{τ_P} .

¹G. Bruneaux, K. Akselvoll, T.J. Poinsot, J.H. Ferziger, Combust. Flame, 107 (1996), pp. 27-44

HOQ Reynolds stresses

Stresses normalised by $u_{\tau R}$ values

Summary and conclusions

- Isothermal wall boundary condition simulations for a V-flame and HOQ in a fully developed turbulent boundary layer at $Re_{\tau} = 110$ have been performed.
- It is found that the mean flame location and the quantities related to turbulence are altered by the change in the flame/flow configuration.
- It is also found that the mean behaviour of velocity and temperature is significantly affected by the flame/flow configuration.
- The standard formulations for near wall treatment in RANS and LES used for nonreacting flows have to be modified to account for flame-wall interaction in fully developed turbulent boundary layers.

Acknowledgements

The authors acknowledge computational support from:

- ARCHER (Project EP/K025163/1)
- Leibniz Supercomputing Centre for access to SuperMUC-NG (grant: pn34xu)
- HPC facility at Newcastle University (Rocket).

NC and UA are grateful to EPSRC (Project EP/P022286/1) for the financial support.

Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities