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|I. Introduction

Motivation

* Lean combustion is used in modern gas turbine combustors to reduce pollutants.

* Flames operating within lean conditions are prone to local extinction and blow-off.

* The mechanisms that lead to blow-off are not well understood.

* The local burning rates become weaker and heat loss can play an influential role with
local extinction and flame blow-off.
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Introduction
Test case

Gas turbine model combustor (GTMC) with dual swirlers,
developed at DLR Stuggart, Germany [1,2].

LDV, PIV and Raman measurements taken for three
methane-air flames

Unstable flame close to blow-off has been experimentally
observed in [3].

- Different flame shapes seen.
- Random lift-off occurred 1-2 times every second [3].

- Loss and re-stabilisation of a flame root.
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. Introduction

Aims & objectives

* Long-term obijective is to investigate whether including heat loss within the modelling
affects the flame’s stabilisation.

 The main aim is to implement a non-adiabatic flamelet approach and simulate the
flame close to blow-off in the DLR GTMC.

* Two simulations are compared to a previous fully adiabatic case that use:
|. Non-adiabatic wall conditions and adiabatic flamelets.

2. Non adiabatic wall conditions with a non-adiabatic flamelet approach.
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2. Numerical detail

LES equations

* Favre filtered equations for mass and momentum are solved.
* Eddy viscosity is modelled using constant Smagorinsky model.

* First two moments of the mixture fraction and the progress variable, along with the
thermochemical enthalpy are transported:
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2. Numerical detail

Previous non-adiabatic modelling approaches

* Many previous studies have use fixed temperature boundary conditions.
* Coupled heat transfer approaches also exist.

* Various approaches have been proposed for non-adiabatic flamelets.

Approach

Bray & Peters, Turbulent Reacting Flows (1994)
Marracino & Lentini, CST (1997)

Van Oijen & de Goey, CST (2000)
Fiorina et al., CTM (2003)

Proch & Kempf, PROCI (2015)
Wollny et al., Fuel (2018)

Wall heat transfer model Ma et al. AIAAJ (2018)
PSR approach Chen et al., Energy Fuel (2018)

Enthalpy deficit approach through radiation

Burner stabilised approach

Heat release damping approach
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2. Numerical detail

Flamelet equations

* Progress variable:
Yoo + Ycoo

Y&o (& h*) + Y802 (€, 1)
* Normalised enthalpy:

B* — h — hmin(gp C)
had (57 C) — Rmin (57 C)

* |D flamelet equations:

dY, d dY,
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U de i dx ('0 )
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2. Numerical detail

Non-adiabatic flamelet table

* Flamelet solutions are undertaken using Cantera v2.3.0.

e |1 flamelets are calculated at equal heat loss factor increments of 0.04 for 20
equivalence ratios across the flammability range.

* For the maximum heat loss factor, the flame speed did not exceed 8% of the adiabatic

value.
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2. Numerical detail

Filtered reaction rate closure

* Partially premixed reaction rate is treated as a sum of premixed and non-premixed
modes:

1 1 1 -
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P(n, ¢, H) = Pg(n; €02 4) X P3(C; €02 ) X 6(H — h*)

1 2
— o 1 d*y®i(n) ~
Wnp = PC P d
Pl X£/0 ped(n)  dn? ()

7@ UNIVERSITY OF

- IR

“§> CAMBRIDGE




2. Numerical detail

Non-adiabatic flamelet table contours

 Similar contours to the study Wollny et al., Fuel (2018).
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2. Numerical detail

Computational grid and solver details

{l_ M Atmospheric far-field

Outer swirler

Fuel injector

Inner swirler

Air feed pipe

* Unstructured grid with 20 million tetrahedral cells is used.

* Pressured based solver in OpenFOAM is used with the PIMPLE algorithm for pressure-
velocity coupling.
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2. Numerical detail

Cases and boundary conditions

* A time-step of 0.15 us is used, to ensure the CFL number does not exceed 0.4.

* Second-order schemes are used for spatial derivatives and an Euler scheme for time
derivatives.

» Statistics for each case are collected over
a time sample of 24 ms.

T =700K

Case AD NAW NAF

Fixed temperature BCs N Y Y q
Non-adiabatic flamelets N N Y 1000 700

T (K)
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2. Numerical detail

ARCHER UK scaling
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* A 1080 core 24 hr job is approximately 400 kAU, which gives 24 ms of statistics.
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3. Results

Axial velocity and mixture fraction profiles
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3. Results

Temperature profiles

1700 : : : 800

1000 - - 400 1

30012 = 60 ol , , ()-hﬂg#_

1700 : : : 800

1000 - - 400 1 0%%0,

o Experiment I I : o I I
—_AD = o
- NAW ~71000+ -

— NAF e

1000 -

300
1700

1000 -

300 . . : :
-40 -20 0 20 40 -40 -20 0 20 40

UNIVERSITY OF
CAMBRIDGE




3. Results

Heat release rate and lift-off height
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3. Results

Established flame root vs. maximum lift-off height
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3. Results

Established flame root vs. maximum lift-off height (cont.)
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Occurrence

Occurrence

Established flame root
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4. Summary

* Two simulations with non-adiabatic modelling are compared to a fully adiabatic flame
close to blow-off.

* The non-adiabatic flamelet model is implemented using a heat release damping method.

* Differences are seen in the temperature profiles and lift-off height/HRR time series.

* The non-adiabatic flamelet case is highly unstable and further analysis is needed to
ascertain its blow-off behaviour.
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Thank you for listening. Any questions?
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