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Background
• Adaptive Mesh Refinement

– Dynamic adaption of the mesh based on the solution

– Local in space and time

• Advantages of AMR

– Higher accuracy and lower cost compared with a static mesh

– CPU time and memory savings

– Full control of the local mesh resolution

– More detailed physics for the same number of cells

• Main Applications

– Problems with large dynamic range of scales

– Flames, two-phase flow, boundary layers, shock waves



AMR in practice

Problems with interfaces

Flames (Boxlib) R-T instability (ENZO Code)    (FLASHCode)

Problems with great variety of scales

Computing Cosmic Cataclysms Turbulence (FLASH Code)

Problems with complex geometries

Engine Combustion Drone

Problems with discontinuities

Moving Shock-Wave (PARAMESH)

Supersonic Vehicle
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AMR in HAMISH

Morton ordering

AMR cell heirarchy

• Cartesian unit-cell mesh - unstructured



Data structures in HAMISH

Refinement criterion based on the Euclidean norm of the local Laplacian

Tree balancing ensures that (at most) h-2h transitions exist

(Quad)tree
Spatial index

(Morton code) Space-filling curve

Ghattas et al (2006)

Partition Interval Table stores the highest local Morton code on each processor



Conservation of fluxes
• Flux calculation (linear scheme: 2nd order)
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RENO scheme
Arbitrarily high-order reconstruction scheme

Solution is reconstructed within each cell using polynomial basis functions ϕ

Fourth order sweet-spot: monomials ψ are:

using Singular Value Decomposition, producing the Moore-Penrose Pseudoinverse Akj
*

Note that Ajk (and Akj
* ) depend only on the local geometric configuration of the stencil.

Fluxes obtained from the polynomials evaluated at Gauss integration points on each cell face

Fluxes calculated for the same face in adjacent cells reconciled using a Riemann solver

Integrate over a cell:

Solve the linear system:



Code Tests
• 1-D planar flame results



Code Tests
• 1-D planar flame results with AMR



• Fixed grid simulation with 2048 cells

• AMR simulation finished with 157 cells

Code Tests
• 1-D planar flame results with AMR



• AMR simulation started with 400 cells, finished with 160 cells

Code Tests
• 1-D HOQ results with AMR



2D laminar flame propagation

• NSCBC gradient outflow

• Single-step chemistry

• AMR + parallel

• Base mesh 128x128

• Circular laminar flame

• Inward propagation

Code Tests



Code Tests
• 2-D Periodic Channel flow: results with AMR

Non-reacting viscous flow



laminar and turbulent channel flow

2D comparisons

3D simulations with AMR

Code Tests



Code Tests
• 2-D thermal conduction problem

• Pure thermal conduction case

• Periodic boundary condition for all sides

• No chemical reaction

• Initial condition

𝑇 = 300 + 100𝑒𝑥𝑝 −
𝑥 − 𝑥0

2 + 𝑦 − 𝑦0
2

4𝛿2

Temperature Dynamic load balance



Rayleigh-Taylor instability

2D 3D

Code Tests



2p×2p×2p, Re=1600, Ma=0.1
J. R. Bull and A. Jameson. "Simulation of the Taylor–Green Vortex Using High-Order Flux

Reconstruction Schemes", AIAA Journal, Vol. 53, No. 9 (2015), pp. 2750-2761.

𝑢 = 𝑈0sin  𝑥 𝐿 cos 𝑦  𝐿 cos 𝑧  𝐿
𝑣 = −𝑈0cos  𝑥 𝐿 sin 𝑦  𝐿 cos 𝑧  𝐿

𝑤 = 0

𝑝 = 𝑝0 +
𝜌0𝑈0

2

16
cos  2𝑥 𝐿 + cos  2𝑦 𝐿 cos 2𝑧  𝐿 + 2

𝜌 = 𝜌0

𝑇 =
𝑝

𝜌𝑅

Code Tests
• 3-D Taylor-Green vortex

t=3 t=6 t=9



Code Tests
• 3-D Taylor-Green vortex
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• Fixed grid 128x128x128

• Best AMR criterion remains uncertain

• Criterion based on enstrophy currently being tested

Q-Criterion Vorticity magnitude Velocity magnitude

Code Tests
• 3-D Isotropic decaying grid turbulence



Scalability so far 
• Scalability of HAMISH without AMR (1283 cells) 
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Code Profiling 
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Profile by function

MCCOMP Compares two Morton codes in their entirety

MCXYZC Converts x-y-z coordinates into a Morton code at the specified level

MCCI2O Converts an encoded integer array to an octal string

OCFIND Searches the local octree using a given Morton code

STEPPR Time stepping of the solution, including calculating RHS

ADAPTM Adapts the spatial mesh

Pie chart shows relative 

CPU costs when AMR is 

active at every solver step. 

Cost of AMR is about 60% 

of the total - i.e. a single 

AMR step costs about 1.5 

times as much as a single 

solver step. 



Summary and Perspectives
• HAMISH code is being tested and accuracy has been assessed

• Good performance and scalability are observed

• Adaptive Mesh Refinement is working and offers good local resolution

- 1D+2D flames, HOQ, 2D+3D channels, R-T instability, TGV, 3D HIT

• Significant savings in total mesh requirement

• AMR step costs about 50% more than a solver step

- but AMR step required only every 10 solver steps or fewer

• Current HAMISH code demonstrates its capability in capturing small-scale 

structures and interfaces in turbulent reacting flows.

Next:

• Further code optimisation

• Improved level set formulation for two-phase flow

• Post-processing tools for turbulence simulation

• OpenMP support
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