

The Effect of Swirl on Boundary Layer-Flashback Processes for Hydrogen-Rich Gas-Turbine Combustion

James Bailey Edward Richardson

We acknowledge financial support from the EPSRC Centre for Doctoral Training in Next Generation Computational Modelling grant EP/L015382/1.

12/09/2019

Background

- Industrial gas turbines
- Fuel-flexible burner and alternative fuels

https://www.researchgate.net/profile/leuan_Owen/publication/282796815/figure/f ig14/AS:668870398464013@1536482538619/A-Siemens-industrial-gas-turbine-engine-showing-the-components-of-a-generic-DLE.png

Flashback

Flashback in Planar Channels

Gruber et al., Journal Fluid Mechanics, 2012, 709, 516-542

Flashback in Swirling Flows

Flashback in Swirling Flows

Radial pressure gradient

- Physical aspects of swirl:
 - Flow orientation

- Physical aspects of swirl:
 - Radial pressure gradient

$$\frac{\partial p}{\partial r} = \rho \frac{V_{\theta}^2}{r} = g$$
$$g' = g \left(\frac{\rho_u - \rho_b}{\rho_u}\right)$$
$$Fr = \frac{S_L}{\sqrt{g'\delta_l}}$$

- Reacting, turbulent channel flow
- Direct Numerical Simulation
- Fully compressible flow
- Detailed chemistry

 $Re_{\tau} = 180$

 $h = 5.76 \, mm$

 $U_{bulk} = 43 m/s$

- Time-evolvingturbulence
- Combustion code: S3D

Х

$$\frac{S_T}{S_L} = f I_0 \frac{A_T}{A_l}$$

S_T	Turbulent flame speed
S_L	Laminar flame speed
f	Flow factor
I ₀	Intensification factor
A_T	Turbulent flame area
A_l	Laminar flame area

$$\frac{S_T}{S_L} = f I_0 \frac{A_T}{A_l}$$

S_T	Turbulent flame speed
S_L	Laminar flame speed
f	Flow factor
I ₀	Intensification factor
A_T	Turbulent flame area

A_l Laminar flame area

Edge flame

 $\frac{U_f}{S_L^0} \sim \left(\frac{\rho_u}{\rho_b}\right)^{1/2}$

Results – Oblique Flow

Flame Shape

Normal Flow

Oblique Flow

Flashback Speed

	f	I ₀	A_T / A_L	S_T / S_L
Normal	-	-	-	-
Oblique				\downarrow
Body force				

Flame Surface Density

	f	I ₀	A_T / A_L	S_T / S_L
Normal	-	-	-	-
Oblique			↓	\downarrow
Body force				

 $y^{+} = 5$

Stretch

 $y^{+} = 5$

Displacement Speed

	f	I ₀	A_T / A_L	S_T / S_L
Normal	-	-	-	-
Oblique		ſ	\downarrow	\downarrow
Body force				

Flow factor

	f	I ₀	A_T / A_L	S_T / S_L
Normal	-	-	-	-
Oblique	↓	ſ	\downarrow	↓
Body force				

Results – Body Force

Flame Shape

No body force $Fr = \infty$

Body force Fr = 0.25

Flashback Speed

	f	I ₀	A_T / A_L	S_T / S_L
Normal	-	-	-	-
Oblique	→	ſ	\downarrow	\downarrow
Body force				1

Flame Surface Density

Stretch

 $y^{+} = 5$

Displacement Speed

	f	I ₀	A_T / A_L	S_T / S_L
Normal	-	-	-	-
Oblique	\downarrow	↑	\downarrow	\downarrow
Body force		\leftrightarrow	\downarrow	1

Flow Factor

	f	I ₀	A_T / A_L	S_T / S_L
Normal	-	-	-	-
Oblique	↓	↑	↓	↓
Body force	ſ	\leftrightarrow	\downarrow	ſ

Conclusions

Conclusions

- Darrieus-Landau hydrodynamic instability dominates effects of streaks
- Flow diversion and buoyancy have significant effects on flame propagation

Future Work

 Simulation of annulus using axi-symmetric coordinates

Thank you

James Bailey – j.r.bailey@soton.ac.uk

12/09/2019

We acknowledge financial support from the EPSRC Centre for Doctoral Training in Next Generation Computational Modelling grant EP/L015382/1.