Large Eddy Simulation of Azimuthal Instability in a Model Annular Gas Turbine Combustor

Zhi X. Chen & N. Swaminathan

University of Cambridge
Department of Engineering
Outline

• Background – thermoacoustic instabilities & azimuthal mode

• LES formulation and combustion modelling

• Simulation of a model annular combustor
 ▶ Single sector – grid sensitivity and flame transfer function (ext. forcing)
 ▶ 12 burner full annular – self-excited oscillations

• Summary and future work
Outline

• Background – thermoacoustic instabilities & azimuthal mode

• LES formulation and combustion modelling

• Simulation of a model annular combustor
 ▸ Single sector – grid sensitivity and flame transfer function (ext. forcing)
 ▸ 12 burner full annular – self-excited oscillations

• Summary and future work
Thermoacoustic instabilities

• Fuel lean combustion is prone to thermoacoustic instabilities in gas turbines.

Thermoacoustic instabilities

- Fuel lean combustion is prone to thermoacoustic instabilities in gas turbines.

Image sources:
Thermoacoustic instabilities

- Fuel lean combustion is prone to thermoacoustic instabilities in gas turbines.

Azimuthal mode

- Azimuthal mode instabilities are more complex, damaging and not yet well understood.

Image sources: 1. WSJ research; Rolls Royce
Azimuthal mode

- Azimuthal mode instabilities are more complex, damaging and not yet well understood.

Image sources: 1. WSJ research; Rolls Royce
Azimuthal mode

- Azimuthal mode instabilities are more complex, damaging and not yet well understood.

Azimuthal mode

- Azimuthal mode instabilities are more complex, damaging and not yet well understood.

Image sources:
1. WSJ research; Rolls Royce
Azimuthal mode

- Azimuthal mode instabilities are more complex, damaging and not yet well understood.

Smaller acoustic length compared to longitudinal modes

Higher frequency and amplitude

LES → Onset of azimuthal instabilities

Image sources:
1. WSJ research; Rolls Royce
Outline

• Background – thermoacoustic instabilities & azimuthal mode

• LES formulation and combustion modelling

• Simulation of a model annular combustor
 ▶ Single sector – grid sensitivity and flame transfer function (ext. forcing)
 ▶ 12 burner full annular – self-excited oscillations

• Summary and future work
LES and combustion modelling

- 3D filtered N-S equations (mass, momentum and energy) are solved
- Compressibility effects are considered: pressure work heating, equation of state

A flamelet model for partially premixed combustion

Chemistry tabulation (GRI 3.0) using a collection of premixed flamelets

\[\varphi = \mathcal{F}(Z, c) \]

First two moments are transported along with enthalpy

\[
\overline{\rho} \frac{D\overline{\varphi}}{Dt} = \nabla \cdot \left[\left(\mu + \frac{\mu_t}{Sc_t} \right) \nabla \overline{\varphi} \right] + \overline{S^+_{\varphi}} - \overline{S^-_{\varphi}}
\]

\[\overline{\varphi} = \left\{ \overline{Z}, \overline{Z^2}, \overline{c}, \overline{c^2}, \overline{h} \right\}, \]

\[\overline{S^+_{\varphi}} = \left\{ 0, 2 \frac{\mu_t}{Sc_t} \overline{| \nabla \overline{Z} |^2}, 2 \frac{\mu_t}{Sc_t} \overline{| \nabla \overline{c} |^2} + 2 \left(c \overline{\omega_c} - \overline{c} \overline{\omega_c} \right), \frac{D\overline{\rho}}{Dt} \right\}, \]

\[\overline{S^-_{\varphi}} = \left\{ 0, 2 \overline{\rho} \overline{cZ}, 0, 2 \overline{\rho} \overline{cZ}, 0 \right\}. \]

Outline

- Background – thermoacoustic instabilities & azimuthal mode
- LES formulation and combustion modelling
- Simulation of a model annular combustor
 - Single sector – grid sensitivity and flame transfer function (ext. forcing)
 - 12 burner full annular – self-excited oscillations
- Summary and future work
Cambridge/NTNU gas turbine model annular combustor

Ref:
Cambridge/NTNU gas turbine model annular combustor

Refs:
Single sector – grid sensitivity and flame transfer function

Single sector – grid sensitivity and flame transfer function

Single sector – grid sensitivity and flame transfer function

<table>
<thead>
<tr>
<th>Grid</th>
<th>G1</th>
<th>G2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta x/\delta_{th}^{0}$</td>
<td>2</td>
<td>1.2</td>
</tr>
<tr>
<td>No. Cells</td>
<td>1.4M</td>
<td>2.1M</td>
</tr>
</tbody>
</table>

Single sector – grid sensitivity and flame transfer function

Grid sensitivity and flame transfer function

<table>
<thead>
<tr>
<th>Grid</th>
<th>G1</th>
<th>G2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δx/δ_{th}^0</td>
<td>2</td>
<td>1.2</td>
</tr>
<tr>
<td>No. Cells</td>
<td>1.4M</td>
<td>2.1M</td>
</tr>
</tbody>
</table>

\[f = 1800 \text{ Hz} \] (1st azim. mode)

\[U_b = 15 \text{ m/s} \]

\[U = A U_b \sin(2\pi ft) \]

Refs:
Single sector – grid sensitivity and flame transfer function

\[
U_b = 15 \text{ m/s} \\
U = A U_b \sin(2\pi ft)
\]

FTF = \frac{\dot{q}'/\bar{q}}{U'_0/U_0} = G(\omega) e^{i\Phi\omega}

\[
f = 1800 \text{ Hz (1st azim. mode)}
\]
Single sector – grid sensitivity and flame transfer function

Ref:

\[
\text{FTF} = \frac{\dot{q}' / \bar{q}}{U'_0 / U_0} = G(\omega) e^{i\Phi \omega}
\]

\[
f = 1800 \text{ Hz (1st azim. mode)}
\]

\[
U_b = 15 \text{ m/s}
\]

\[
U = A U_b \sin(2\pi ft)
\]
Single sector – grid sensitivity and flame transfer function

Ref:

\[
\begin{array}{|c|c|c|}
\hline
\text{Grid} & \text{G1} & \text{G2} \\
\hline
\Delta x/\delta_{th}^0 & 2 & 1.2 \\
\hline
\text{No. Cells} & 1.4M & 2.1M \\
\hline
\end{array}
\]

\[
\dot{q} = \int_V HRR(x, t) \, dV
\]

\[
\text{FTF} = \frac{\dot{q}'/\bar{q}}{U'/U_0} = G(\omega) \, e^{i\Phi\omega}
\]

\[
f = 1800 \text{ Hz} \\
(1\text{st azim. mode})
\]

\[
U_b = 15 \text{ m/s}
\]

\[
U = A \, U_b \, \sin(2\pi ft)
\]
Single sector – grid sensitivity for temperature and velocity fields

<table>
<thead>
<tr>
<th>Grid</th>
<th>G1</th>
<th>G2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δx/δ_vh</td>
<td>2</td>
<td>1.2</td>
</tr>
<tr>
<td>No. Cells</td>
<td>1.4M</td>
<td>2.1M</td>
</tr>
</tbody>
</table>
Single sector – grid sensitivity for temperature and velocity fields

<table>
<thead>
<tr>
<th>Grid</th>
<th>G1</th>
<th>G2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta x/\delta_{vl}$</td>
<td>2</td>
<td>1.2</td>
</tr>
<tr>
<td>No. Cells</td>
<td>1.4M</td>
<td>2.1M</td>
</tr>
</tbody>
</table>

$x/D = 2$

Unforced
Single sector – grid sensitivity for temperature and velocity fields

<table>
<thead>
<tr>
<th>Grid</th>
<th>G1</th>
<th>G2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta x/\delta_{th})</td>
<td>2</td>
<td>1.2</td>
</tr>
<tr>
<td>No. Cells</td>
<td>1.4M</td>
<td>2.1M</td>
</tr>
</tbody>
</table>

- \(x/D = 2 \)
- \(x/D = 1 \)
- \(x/D = 0.5 \)

Unforced

Mean axial velocity

Mean temperature
Single sector – grid sensitivity for flame transfer function

\[\dot{q} = \int_V HRR(x, t) \, dV \]

\[\text{FTF} = \frac{\dot{q}'/\bar{q}}{U'_0/U_0} = G(\omega) \, e^{i\Phi\omega} \]

\[U = A \, U_b \sin(2\pi ft) \]

<table>
<thead>
<tr>
<th>Grid</th>
<th>G1</th>
<th>G2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta x/\delta_{th}^0)</td>
<td>2</td>
<td>1.2</td>
</tr>
<tr>
<td>No. Cells</td>
<td>1.4M</td>
<td>2.1M</td>
</tr>
</tbody>
</table>
Single sector – grid sensitivity for flame transfer function

\[\dot{q} = \int_V HRR(x, t) \, dV \]

FTF = \(\frac{\dot{q}' / \bar{q}}{U'_0 / U_0} = G(\omega) \, e^{i\Phi \omega} \)

\[p'/\bar{p} < 1\% \]

Two excitation amplitudes are tested: 5% & 10%

\[U = A \, U_b \, \sin(2\pi ft) \]

<table>
<thead>
<tr>
<th>Grid</th>
<th>G1</th>
<th>G2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta x / \delta_{th}^0)</td>
<td>2</td>
<td>1.2</td>
</tr>
<tr>
<td>No. Cells</td>
<td>1.4M</td>
<td>2.1M</td>
</tr>
</tbody>
</table>
Single sector – grid sensitivity for flame transfer function

\[\dot{q} = \int_V HRR(x, t) \, dV \]

\[\text{FTF} = \frac{\dot{q}'/\bar{q}}{U'_b/U_0} = G(\omega) \, e^{i\Phi_\omega} \]

\[p'/\bar{p} < 1\% \]

Two excitation amplitudes are tested: 5\% & 10\%

\[U = A \, U_b \sin(2\pi ft) \]

<table>
<thead>
<tr>
<th>Grid</th>
<th>G1</th>
<th>G2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta x/\delta_{th}^0)</td>
<td>2</td>
<td>1.2</td>
</tr>
<tr>
<td>No. Cells</td>
<td>1.4M</td>
<td>2.1M</td>
</tr>
</tbody>
</table>

For \(A = 0.05\):

For \(A = 0.1\):

Fluctuation vs. time for different cases.
Single sector – grid sensitivity for flame transfer function

\[\dot{q} = \int_V HRR(\bar{x}, t) \, dV \]

\[\text{FTF} = \frac{\dot{q}'/\bar{q}}{U'_0/U_0} = G(\omega) \, e^{i\Phi_\omega} \]

\[p'/\bar{p} < 1\% \]

Two excitation amplitudes are tested: 5% & 10%

\[U = A \, U_b \, \sin(2\pi ft) \]

<table>
<thead>
<tr>
<th>Grid</th>
<th>G1</th>
<th>G2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta x/\delta_{th}^0)</td>
<td>2</td>
<td>1.2</td>
</tr>
<tr>
<td>No. Cells</td>
<td>1.4M</td>
<td>2.1M</td>
</tr>
</tbody>
</table>

\[\text{Gain} \]

\[\text{Phase/\pi} \]

\[A [-] \]
Outline

• Background – thermoacoustic instabilities & azimuthal mode

• LES formulation and combustion modelling

• Simulation of a model annular combustor
 ▶ Single sector – grid sensitivity and flame transfer function (ext. forcing)
 ▶ 12 burner full annular – self-excited oscillations

• Summary and future work
Computed pressure signals in the plenum tubes

- Longitudinal mode
- Transition
- Azimuthal mode

![Diagram showing pressure signals in the plenum tubes](image)
Computed pressure signals in the plenum tubes

- Longitudinal mode
- Transition
- Azimuthal mode

![Graph showing pressure signals with markers for longitudinal, transition, and azimuthal modes.](image)
Computed pressure signals in the plenum tubes

- Longitudinal mode
- Transition
- Azimuthal mode

Graphs showing pressure signals over time with different modes indicated.
Computed pressure signals in the plenum tubes

Computational cost: 48 hrs on wall-clock for 0.1s using 1248 cores, 20M cells \(\rightarrow\) 900 kAU
Longitudinal mode
Azimuthal mode
Longitudinal -> Azimuthal mode transition in frequency domain

![Graph showing longitudinal to azimuthal mode transition in frequency domain.](image-url)
Heat release rate fluctuations and acoustic mode structure
Outline

• Background – thermoacoustic instabilities & azimuthal mode

• LES formulation and combustion modelling

• Simulation of a model annular combustor
 ▸ Single sector – grid sensitivity and flame transfer function (ext. forcing)
 ▸ 12 burner full annular – self-excited oscillations

• Summary and future work
Summary and future work

• Azimuthal instability in a model annular combustor is studied using LES

• LES are performed in two steps:
 ▶ Single sector – grid sensitivity and flame transfer function (external forcing)
 ▶ 12 burner full annular – self-excited oscillations: transition from longitudinal to azimuthal mode

• Projected future works:
 ▶ Analyse the LES data to study mode switching
 ▶ Non-adiabatic simulations
Thank you for listening!

Questions?