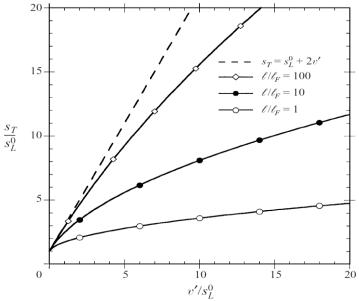


DNS analysis of flame propagation for systematic variations in turbulence scales and intensity


Shrey Trivedi, Stewart Cant

Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom

UKCTRF 2019 Annual Meeting, London, September 11-12, 2019

Introduction

- Flame speed, area and number of flame-flame interactions change with both intensity of turbulence and its associated length scales.
- Most studies focus on variation of turbulence intensity.
- Current analysis provides DNS datasets with systematic variations in turbulence intensity u' as well as integral length scales l_0 .
- Figure shows prediction by Peters [1].

1. N. Peters "The turbulent burning velocity for large-scale and small-scale turbulence". Journal of Fluid Mechanics 384 (1999), pp. 107–132

Flame Speed and Area

• In corrugated flame regime the flames speed and flame area follow the relation

$$\frac{s_T}{s_L} \sim \frac{A_T}{A_L} \Longrightarrow \frac{s_T}{s_L} = \frac{A_T}{A_L} I_0$$

where s_T and A_T can be evaluated as

$$s_T = -\frac{1}{\rho_u Y_{u,F} A_0} \int_V \omega_F dV$$

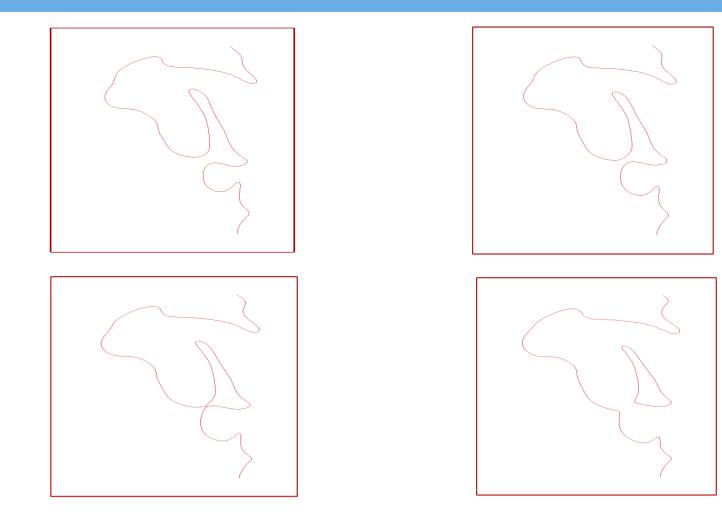
$$A_T = \int_{-\infty}^{\infty} \Sigma \delta(c - c^*) dV$$

• In thin reaction zones regime, turbulent diffusivity D_T can also affect the flame propagation.

$$s_T/s_L = \frac{A_T}{A_L} \left(1 + \frac{D_T}{D}\right)^{1/2}$$

Flame-Flame Interactions

- Evaluated by finding critical points [2, 3]
- Critical point is defined as a point on a surface where the gradient of the scalar is either zero or does not exist.
- For a flame, the scalar to define a surface is progress variable *c*


$$c = \frac{Y_{\alpha} - Y_{\alpha R}}{Y_{\alpha P} - Y_{\alpha R}}$$

• When flames interact, they mutually annihilate each other, ∇c does not exist at this point, therefore, it is a critical point.

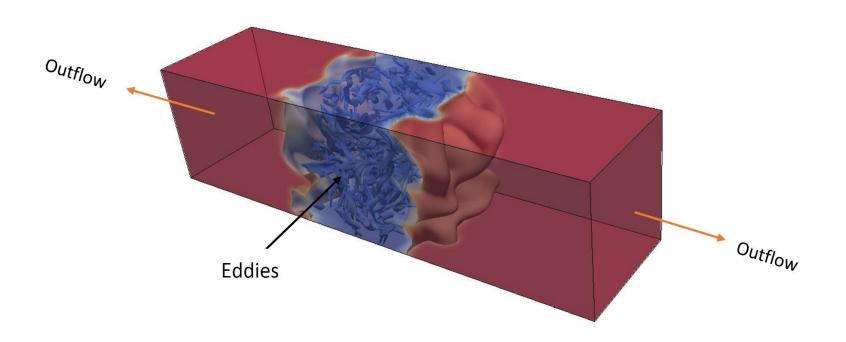
2. J. Milnor, Analysis of Math. Studies, Princeton University Press (1963) p. 51.
3. R.A.C. Griffiths, J.H. Chen, H. Kolla, R.S. Cant, W. Kollman, Proceedings of the Combustion Institute, 35 pp. 1341-1348 (2014)

Flame-Flame Interactions (contd...)

- 1. Create a well resolved DNS dataset with systematic variations in integral length scale l_0 as well as turbulence intensity u'.
- 2. Evaluate the flame properties such as flame speed, flame area and flame-flame interactions.
- 3. Find something interesting.

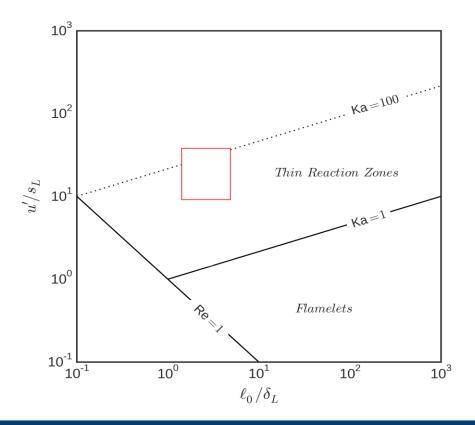
Numerical analysis

- DNS code Senga2 written by Professor Stewart Cant based on tenth-order finite-difference scheme for spatial discretisation and fourth order five-stage Range-Kutta algorithm for time-stepping
- The Navier-Stokes equation is solved in fully compressible form together with continuity, energy and species equations.
- Both reduced and detailed chemical schemes are available for hydrogen-air and methane-air combustion
- The Navier-Stokes Characteristic Boundary Condition (NSCBC) formulation is used to set up boundary conditions in Senga2



DNS Dataset Description

- A pair of statistically planar flames facing each other with fresh reactants between them are simulated in a cuboidal domain of cross section 5mm x 5mm.
- The boundaries are set as periodic in the y- and z-directions. Both the +x and -x boundaries are set as outflow
- The mesh spacing is varied in each case to match the Kolmogorov scale.


Twin Flame Configuration

Dataset description

• Turbulence intensity u' is systematically varied from $10s_L$ to $40s_L$, whereas the integral length scales are varied from $l_0 = 5.0\delta_L$ to $1.25\delta_L$.

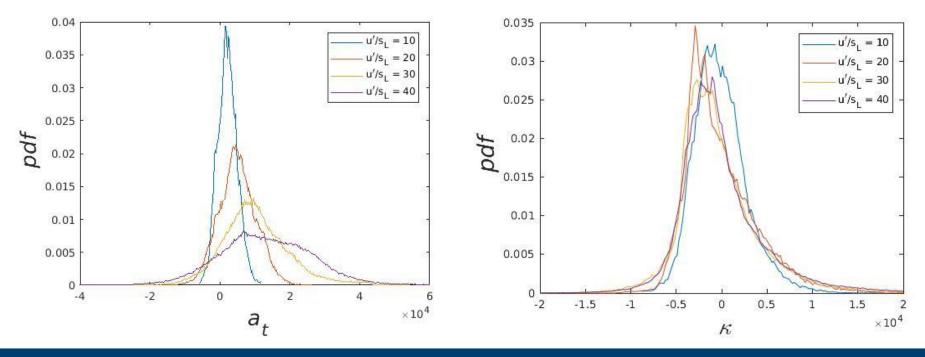
DNS Dataset – The Matrix

	$\ell_0 = 5\delta_L$	$\ell_0 = 2\delta_L$	$\ell_0 = 1.25 \delta_L$
$u' = 10s_L$	$\sim_0 - 50L$	$\sim_0 - 20L$	$v_0 = 1.25 o_L$
$\frac{u - 105L}{Ka}$	14.14	22.36	28.28
Da	0.5	0.2	0.125
Re	50	$\begin{vmatrix} 0.2\\20 \end{vmatrix}$	12.5
-	39.27	24.85	20.33
$\eta (\mu m)$	41.66	26.04	20.833
$\Delta x (\mu m)$	41.00	20.04	20.855
/ 20	1	1	1
$u' = 20s_L$		62.25	
Ка	40.0	63.25	80.0
Da	0.25	0.1	0.0625
Re	100	40	25
η (μ m)	28.76	18.19	14.38
$\Delta x (\mu m)$	26.04	17.36	13.02
$u' = 30s_L$			
Ка	73.5	116.2	
Da	0.166	0.0667	
Re	150	60	
η (μ m)	23.48	14.85	
$\Delta x (\mu m)$	22.72	13.02	
$u' = 40s_L$			
Ка		178.9	
Da		0.05	
Re		80	
η (µm)		12.86	
		11.90	
$u' = 40s_L$ Ka Da	22.12	178.9 0.05 80 12.86	

Twin Flame Configuration

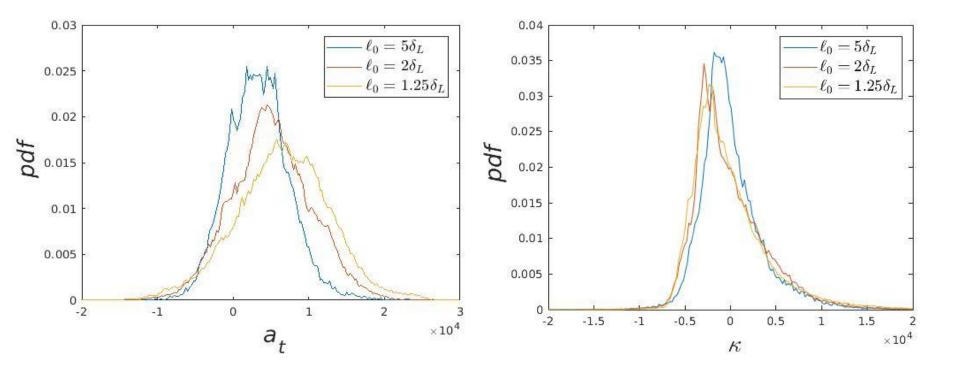
(a) $\ell_0 = 5.0\delta_L$

(b) $\ell_0 = 2.0\delta_L$


(c) $\ell_0 = 1.25 \delta_L$

Results Strain and Curvature PDFs

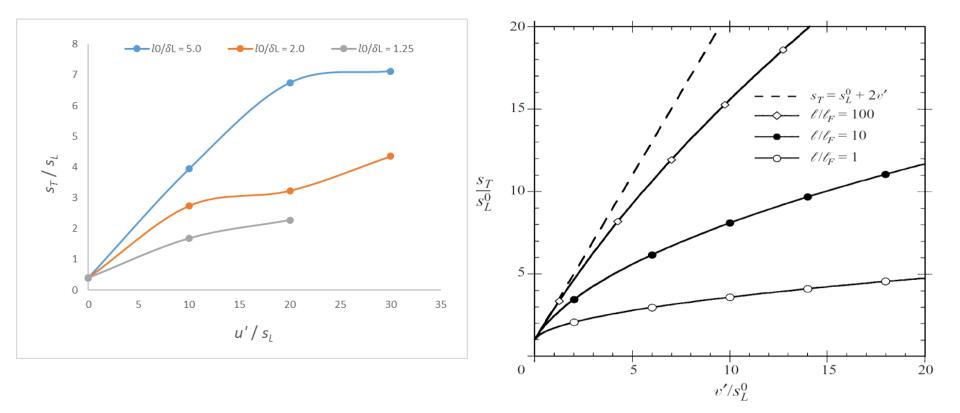
- Pdfs for varying u' are presented here represented by different colours.
- All cases correspond to $l_0 = 2.0\delta_{L}$



G. V. Nivarti and R. S. Cant. "Direct numerical simulation of the bending effect in turbulent premixed flames". Proceedings of the Combustion Institute 36 (2017), pp. 1903–1910.

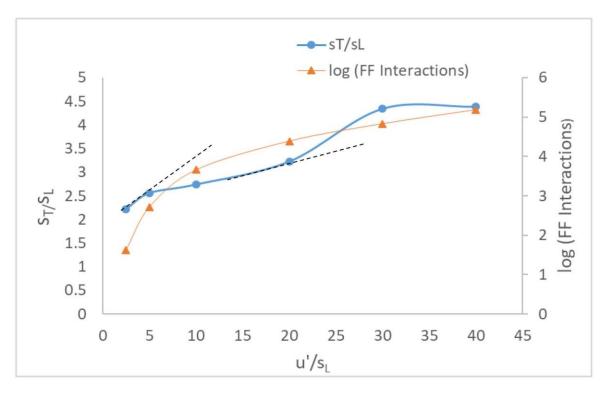
Results – Strain and Curvature PDFs

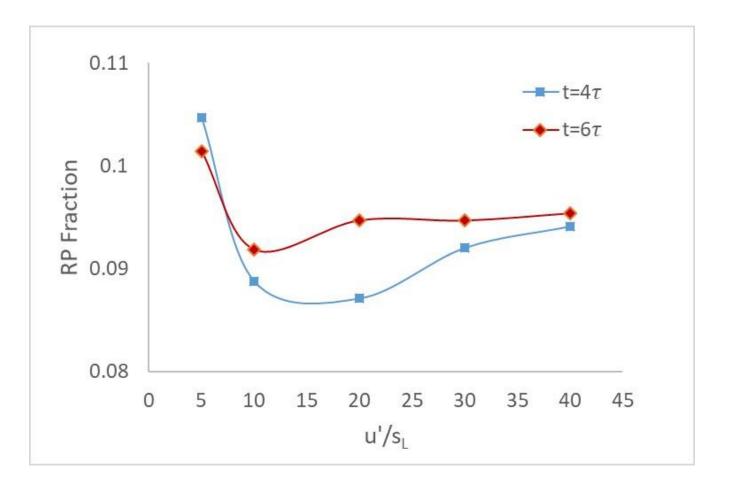
• Tangential Strain Rate and Mean Curvature pdfs for varying l_0 and $u'/s_L = 20$ are presented here represented by different colours.



Flame Speed, Area and Flame-Flame Interactions

<i>u</i> ′	ℓ_0/δ_L	s_T/s_L	A_T/A_L	I ₀	FF	
$10s_L$	5.0	3.94	3.89	1.012	1987	
	2.0	2.74	2.75	0.996	4551	
	1.25	1.68	1.71	0.984	5745	
$20s_L$	5.0	6.74	6.41	1.050	16882	
	2.0	3.23	3.22	1.002	24506	
	1.25	2.27	2.37	0.958	31574	
$30s_L$	5.0	7.12	6.52	1.091	59966	
	2.0	4.35	4.17	1.042	67779	
$40s_L$	2.0	4.388	4.147	1.058	153606	



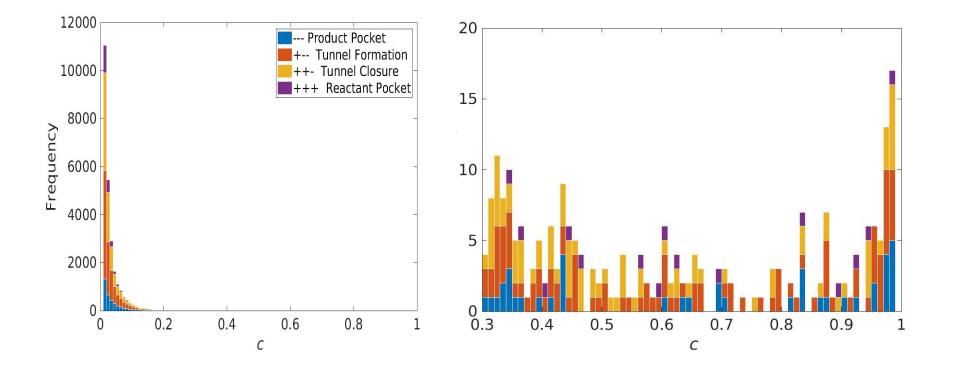

Bending (and Reverse Bending?)

- Flame speed at different values of u'/s_L and fixed l_0 (= 2.0 δ_L)
- Orange line shows the log of total number of flame-flame interactions.

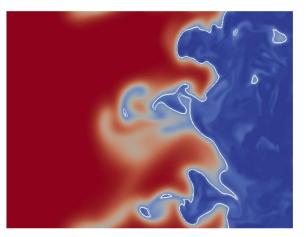
Bending (and Reverse Bending?)

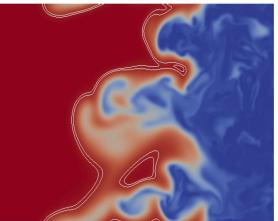
Future Work

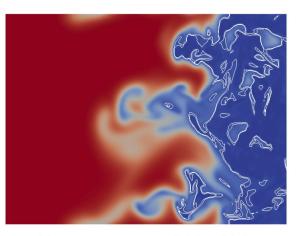
- In progress: DNS dataset with variation in both integral length scales l_0 and turbulence intensity u'.
- Run the simulation longer to get better estimate of flame properties.
- Study the effects of flame-flame interactions on overall flame propagation.
- Evaluate turbulent diffusivity D_T : transition between DH1 and DH2.

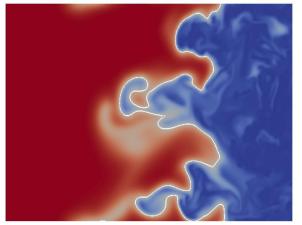


Acknowledgements








(b) Iso-contours at c = 0.20 and 0.22

(d) Iso-contours at c = 0.90 and 0.92

(a) Iso-contours at c = 0.05 and 0.07

(c) Iso-contours at c = 0.50 and 0.52

