
.

Discrete Fourier Transforms

for Turbulence

Stewart Cant

CUED/A–THERMO/TR65
September 2012

1



Introduction

This document is intended as a brief guide to the discrete Fourier transform with emphasis on its appli-
cation to Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) of turbulent flow and
turbulent combustion. The theory of the discrete Fourier transform is well covered in a number of stan-
dard texts and only the briefest outline will be given here. For further information the reader is referred
in particular to the comprehensive, practical and very readable account in Numerical Recipes [1] and the
classic work of Brigham [2]. The use of Fourier transforms in turbulence theory is discussed at length by
Batchelor [3], and Fourier pseudo–spectral methods for numerical solution of the Navier–Stokes equations
are presented by Canuto et al. [4] where a number of other popular spectral methods are also discussed.
Even where Fourier methods are not used as the primary means of solving the governing equations it is
often convenient to establish turbulent initial or boundary conditions in terms of Fourier coefficients. A
good example is the method given by Orszag and Patterson [5] which is in widespread use in DNS and
LES. Similarly, Fourier methods are often used in diagnostic tools for the analysis of results from DNS
and LES calculations, particularly when correlation data is required.

Practical use of Fourier transform methods depends on the existence of the Fast Fourier Transform
(FFT), for the purposes of DNS and LES it is necessary for the transform to be as fast as possible.

Continuous Fourier Transform

The Fourier transform F (k) of a function f(x) is defined together with the inverse transform as

F (k) =

∫

∞

−∞

f(x) exp (2πikx)dx (1)

f(x) =

∫

∞

−∞

F (k) exp (−2πikx)dk (2)

where k is the linear wavenumber. Note that the equivalent angular wavenumber is k̂ = 2πk. In general
the functions f(x) and F (k̄) are complex–valued, and the above definition of the Fourier transform is
valid for an infinite domain in both x–space and k–space provided that the functions f(x), F (k̄) satisfy
certain mild constraints to ensure convergence of the integrals [2, 6]. For present purposes it is necessary
to restrict attention to a domain of finite length L, and to assume that the function f(x) is periodic.
Then the transform definitions become

F (k) =

∫ L

0

f(x) exp (2πikx)dx (3)

f(x) =
1

L

∞
∑

k=−∞

F (k) exp (−2πikx) (4)

in which the linear wavenumber k has become a discrete variable given by k = k/L where k is an integer.
The discrete nature of the wavenumber space follows naturally from the periodicity of the function f(x)
on the finite domain of length L, since L must be an exact integer multiple of the wavelength λ = 1/k.
Equation (4) is the definition of the classical Fourier series, with coefficients given by equation (3).

It must be noted that there are many different variants of the Fourier transform, all of which share
the essential feature of projecting a function of interest onto a set of complex exponential basis functions.
There is no inconsistency provided that the forward and inverse transforms are compatible, and that some
care is exercised in the physical interpretation of the coefficients F (k). The present definition embodied
in eqns.(1–4) is chosen for simplicity and ease of computational implementation, and there is evidence
that this definition is becoming the de facto standard. Variations occur mainly in terms of notation and
normalisation, and some of the common alternative definitions are given in the Appendix.

2



Discrete Fourier Transform

The Discrete Fourier Tranform (DFT) is formed by sampling the continuous function f(x) at N equally–
spaced points along the finite interval L to yield the N values fj, j = 0, . . . , N −1. The sampling interval
is δx = L/N , and the spatial location of the j-th sample is given by x = jδx = jL/N . The definition of
the wavenumber k is unchanged, but the maximum wavenumber that can be resolved using N samples
is now the Nyquist wavenumber kmax = N/2L, and the maximum value of the wavenumber index k is
N/2. The Nyquist limit arises for the fundamental reason that, for a sine wave of a given wavenumber,
a minimum of two samples is required in order to repesent the amplitude and phase. If the continuous
function f(x) contains information at higher wavenumbers than the Nyquist limit then N samples is
insufficient to resolve the signal and an aliasing error will result. The only cure is to increase the value of
N . The value of the Nyquist wavenumber is also consistent with the principle that the Fourier transform
cannot generate new information, so that the N complex samples fj must transform to exactly N complex
Fourier coefficients Fk. Discretisation of the integral in (3) and truncation of the Fourier series (4) at the
maximum wavenumber yields the discrete Fourier transform pair

Fk = δx

N−1
∑

j=0

fj exp (2πijk/N) (5)

fj =
1

Nδx

N/2
∑

k=−N/2

Fk exp (−2πijk/N) (6)

Note that the sum in the discrete inverse transform (6) is written to run from k = −N/2 to k = N/2.
This reflects the existence of the Nyquist limit, emphasises the symmetry properties of the transform and
is computationally convenient. For even values of N the range [−N/2 . . .N/2] appears to correspond to
a total of N + 1 rather than N transform elements, but in fact the value F−N/2 is identically equal to
the value FN/2 due to the periodicity of the discrete transform Fk. For the case of N odd the true limits
of k are ±(N − 1)/2, which automatically yields the correct total number N of transform elements.

Fast Fourier Transform

The computational cost of the DFT is rather high, since it requires at least N multiplications and
additions to evaluate each element of the transform, and there are N transform values to compute. Thus
the DFT algorithm requires O(N2) arithmetic operations, and for large datasets the computational cost
is prohibitive. Fortunately there is another approach, based on decomposing the sum in the transform
expression (5) or (6) into two sums each of half the length. The forward transform becomes

Fk = δx
N−1
∑

j=0

fj exp (2πijk/N)

= δx

N/2−1
∑

j=0

f2j exp (2πi(2j)k/N) + δx

N/2−1
∑

j=0

f2j+1 exp (2πi(2j + 1)k/N)

= F 0
k + exp (2πik/N)F 1

k (7)

where it is clear that F 0
k and F 1

k (k = 0 . . .N/2 − 1) are respectively the DFTs of the even- and odd–
numbered elements of the original dataset fj . The decomposition (7) is called the Danielson–Lanczos
formula, and it may repeated recursively on each of F 0

k and F 1
k to produce four reduced transforms F 00

k ,
F 01

k , F 10
k and F 11

k (k = 0 . . .N/4 − 1), and so on. The process results in a heirarchy of transforms each
half the length of its predecessor until all that remains is a transform of length 1, which is simply an
identity operation, i.e. F b

1 = fp, where b is a string of binary digits, e.g. b = 101 . . .010, and fp denotes
a single element of the dataset fj . It is not immediately obvious which one–point transform corresponds

3



to which element of fj, and this is determined by noting that the application of the Danielson–Lanczos
formula at each level of the heirarchy acts to select the even (=0) and odd (=1) elements from the current
reduced dataset. Each selection amounts to a test of one bit of the index j expressed as a binary number,
starting from the least significant bit and moving one bit higher at each level of the heirarchy until all
bits have been tested and the one–point transform level has been reached. Then the binary string b that
serves to identify each one–point transform also provides a record of the even–odd selections that were
taken to arrive at that point, and is nothing less than the binary representation of the single index p,
expressed in bit–reversed order. The FFT algorithm due to Cooley and Tukey [7] uses this approach to
rearrange the original dataset into bit–reversed index order, whereupon the Danielson–Lanczos formula is
applied recursively to build up the required N -point transform. The inverse transform may be computed
in precisely the same manner, with the factor exp (2πik/N) replaced by exp (−2πik/N). Each application
of the Danielson–Lanczos formula requires O(N) operations, and the number of levels in the heirarchy
is equal to the length of the bit–string b which by definition is log2 N . Thus the overall cost of the basic
Fast Fourier Transform (FFT) algorithm is O(N log2 N) operations, which represents a very significant
saving over the DFT.

A drawback of the basic FFT algorithm is that it is applicable only for a transform of length N = 2m

where m is an integer. This is unimportant for many applications, but in other cases it is necessary to
work with transforms whose length lies inconveniently between neighbouring powers of two. Variants of
the FFT exist for transform lengths that are multiples of powers of small prime factors (e.g. 2, 3, 5, 7
etc.) and these can be made highly efficient. An FFT algorithm for arbitrary transform lengths has been
given by Bluestein [10] and retains the O(N log2 N) operation count.

Multidimensional Fourier Transforms

Extension of the standard one–dimensional Fourier transform to two, three or higher dimensions is
straightforward. Defining f as a scalar function of a position vector x, and F as a scalar function of a
wavenumber vector k, the continuous Fourier transform relations between them on an infinite domain
are

F (k) =

∫

∞

−∞

f(x) exp (2πik.x)dx (8)

f(x) =

∫

∞

−∞

F (k) exp (−2πik.x)dk (9)

where k.x is the scalar product of the position and wavenumber vectors, and the integrals are taken over
all directions. Clearly this definition allows for Fourier transforms of any dimensionality, corresponding to
the dimensionality of the vectors x and k. Restricting attention to a Cartesian vector space of dimension
M and finite size Lm in the m-th direction, the transform relations become

F (k) =

∫ L1

0

. . .

∫ LM

0

f(x) exp (2πik.x)dx1 . . . dxM (10)

f(x) =
1

L1
. . .

1

LM

∞
∑

k1=−∞

. . .
∞
∑

kM=−∞

F (k) exp (−2πik.x) (11)

and the components of the wavenumber vector are given by km = k/Lm where k is an integer. In a Carte-
sian or other orthogonal coordinate system the multidimensional Fourier transform may be decomposed
easily and treated as a succession of one–dimensional transforms:

F (k1 . . . kM ) =

∫ L1

0

dx1 exp (2πik1x1) . . .

∫ LM

0

dxM exp (2πikMxM )f(x1 . . . xM ) (12)

4



f(x1 . . . xM ) =
1

L1

∞
∑

k1=−∞

exp (2πik1x1) . . .

1

LM

∞
∑

kM=−∞

exp (2πikMxM )F (k1 . . . kM ) (13)

where it is implicit that there exists a succession of partially–transformed functions f and F , and it is
clear that the order in which the one–dimensional transforms are carried out is irrelevant.

The multidimensional discrete Fourier transform relations are defined for a space of M dimensions
m = 1 . . .M each containing Nm points. The sampling interval in each direction is δxm = Lm/Nm and
in the general case all directions may have different sizes and numbers of points. The relations are

Fk1...kM
= δx1

N1−1
∑

j1=0

exp (2πij1k1/N1) . . .

δxM

NM−1
∑

jM =0

exp (2πijMkM/NM )fj1...jM
(14)

fj1...jM
=

1

N1δx1

N1/2
∑

k1=−N1/2

exp (−2πij1k1/N1) . . .

1

NMδxM

NM/2
∑

kM=−NM/2

exp (−2πijMkM/NM )Fk1...kM
(15)

and once again it is clear that each dimension may be treated separately.

Generalised Prime Factor FFT Algorithm

An FFT algorithm suitable for dataset lengths N = 2a3b5c where a,b and c are non–negative integers has
been presented by Temperton [8, 9]. The algorithm is self–sorting, requires minimal workspace, and is
among the most computationally efficient FFTs yet developed. Generalisation to powers of larger prime
numbers is straightforward, although the computational cost then begins to increase significantly. The
algorithm is derived by considering the discrete Fourier transform of length N written as

Fk =
N−1
∑

j=0

fjω
jk
N (16)

where 0 ≤ k ≤ N − 1 and ωN = exp (2πi/N). Note that the inverse transform may be treated in the
same manner.

The DFT may be expressed in matrix form by defining the transform matrix WN (j, k) = ωjk
N , where-

upon (16) may be rewritten as
F = WNf

and many different FFT algorithms may be obtained by appropriate factorisation of the symmetric
non–sparse matrix WN into products of sparse matrices. The Temperton algorithm is based on the
decimation–in–frequency approach. Take N = N1N2, and denote the corresponding reduced–order DFT
matrices as WN1

and WN2
. A permutation matrix of order N is defined as

PN1

N2
(j, k) = 1 if j = rN1 + s and k = sN2 + r

= 0 otherwise (17)

5



for integer values r and s, and a diagonal matrix of order N containing the “twiddle factors” is defined
as

DN1

N2
(j, k) = ωsm

N if j = k = sN2 + m

= 0 otherwise. (18)

Then, with identity matrices IN1
and IN2

of order N1 and N2 respectively, the order N DFT matrix may
be factorised as

WN = (WN2
× IN1

)PN1

N2
DN1

N2
(WN1

× IN2
)

where × denotes the Kronecker outer product. Using the matrix identity

(WN2
× IN1

)PN1

N2
= PN1

N2
(IN1

× WN2
)

the factorisation of WN becomes

WN = PN1

N2
(IN1

× WN2
) DN1

N2
(WN1

× IN2
)

Thus the original DFT has been decomposed into a sequence of operations consisting of N2 DFTs of
length N1, multiplication by a set of twiddle factors, N1 DFTs of length N2, and finally a permutation.
For the general case of N = N1N2 . . .Nn−1Nn the factorisation becomes

WN = P1P2 . . . Pn−1PnTnTn−1 . . . T2T1 (19)

in which the permutation matrices are given for stage i, 1 ≤ i ≤ n of the transform by

Pi =
(

Ili × PNi

mi

)

,

and the corresponding operator matrices are

Ti = Ili ×
[

DNi

mi
(WNi

× Imi
)
]

where li+1 = Nili with l1 = 1, and mi = N/li+1. Note that no assumption has been made so far that
restricts the values of the factors N1 and N2, and so the factorisation (19) remains completely general.

The usefulness of the approach becomes clear if N is a power of a small prime factor, e.g. the radix–2
case N = 2n. Then Ni = 2 for all i, and the operator matrices become

T1 = D2
N/2

(

W2 × IN/2

)

T2 = I2 ×

[

D2
N/4

(

W2 × IN/4

)

]

. . .

Tn−1 = IN/4 ×
[

D2
2 (W2 × I2)

]

Tn = IN/2 × W2

for the n stages of the transform. Interpretation of the operator Ti at each stage is quite straightforward.
The first stage operator T1 applies a DFT of length 2 (as expressed by the matrix W2) a total of N/2
times, with multiplication of each result by a twiddle factor from the list of N values, of which N/2 are
distinct, specified in the diagonal matrix D2

N/2. The second stage operator T2 applies N/4 DFTs of length

2, with multiplication of each result by a twiddle factor from the list of N/2 values (N/4 distinct) in the
matrix D2

N/4, and carries out the entire operation twice over. At each subsequent stage the number of
DFTs in the first step is halved along with the number of distinct twiddle factors, and the entire operation
is repeated twice as many times. At the final stage expressed by Tn the length 2 DFT is repeated N/2
times without twiddle factors. It is clear that the largest DFT matrix that appears at any stage is W2,
and the advantage of the method is that a DFT of length 2 involves only a small number of additions
and multiplications and hence is inherently fast. Then the transform of length N is built up by repeating

6



the length–2 transform a total of N/2 times, with twiddle factors, at each of the n = log2 N stages so
that the total operation count is proportional to N log2 N .

In the algorithm as described the results emerge from the sequence of transform stages in scrambled
order, and the process of unscrambling is carried out by the sequence of permutations P1P2 . . . Pn per-
formed at the end. The unscrambling may be treated as a single operation which in a radix–2 FFT
corresponds to bit–reversal, as in the Cooley–Tukey algorithm. Note that the Cooley–Tukey algorithm
uses decimation–in–time and hence the bit–reversal operation takes place at the beginning of the process.

In order to produce a self–sorting transform a permutation matrix Qi
j may be defined for each single

bit–reversal operation according to
x′ = Qi

jx

whereby the vector elements xk̂ and xk are interchanged, and where the index k̂ is obtained from k
by interchanging bits i and j of its binary representation. Then the complete bit–reversal operation is
defined as

P1P2 . . . Pn−1Pn = Q0
n−1Q

1
n−2 . . . Q

n/2−2
n/2+1Q

n/2−1
n/2 .

Substituting in (19) and using the distributive properties of the Kronecker product it may be shown [8]
that the factorisation of the DFT becomes

WN =
(

Q0
n−1Tn

) (

Q1
n−2Tn−1

)

. . .
(

Q
n/2−1
n/2 Tn/2+1

)

Tn/2 . . . T2T1.

Thus the bit–reversal operation is spread over the second half of the sequence of n transform stages, noting
that for odd n the middle stage is left untouched. In practice the self–sorting transform involves pairing
up the length–2 DFTs that are affected by the bit–reversal at each stage. These are easily identified since
they also turn out to have the same twiddle factor. If the output values from the first element of the pair

are denoted by (F
(1)
1 , F

(1)
2 ) and those of the second element by (F

(2)
1 , F

(2)
2 ), then the interchange of the

output values corresponds to placing them in a 2× 2 matrix and taking the transpose according to
[

F
(1)
1 F

(1)
2

F
(2)
1 F

(2)
2

]

→

[

F
(1)
1 F

(2)
1

F
(1)
2 F

(2)
2

.

]

Implementation of the radix–2 prime factor algorithm follows the factorisation (19) quite literally. Com-
putational efficiency can be maximised by precomputing a table of twiddle factors and by taking together
at each stage all length–2 DFTs having the same twiddle factor. This simplifies the indexing of the input
data and allows the self–sorting procedure to take place quite naturally.

Extension to the case of N = 3n is immediate, and the largest DFT matrix appearing in the factori-
sation (19) then becomes W3. A DFT of length 3 is somewhat more complicated than that for length
2 but remains inherently fast, and the complete transform is constructed as before, by repeating the
length 3 transform N/3 times, with twiddle factors, at each stage. The unscrambling process makes use
of “trit–reversal”, which is simply the base–3 analogue of bit–reversal, and the self–sorting procedure
involves coupling the length–3 transforms in groups of three, with transposition of a 3× 3 matrix. Values
of N = pn for p > 3 may be handled in the same manner, and indeed p is not explicitly constrained to be
a prime number. Nevertheless it should be noted that the computational cost of the necessary length–p
DFT rises strongly with the value of p, and this motivates the reduction of N to a power of the smallest
possible (i.e. prime) factor.

The mixed–radix case is derived by taking N = N1N2 where N1 and N2 are now mutually prime. Then
it is possible to factorise the transform using a “Ruritanian map”. Each index j and k is to be associated
with a pair of indices (j1, j2) and (k1, k2) respectively, such that 0 ≤ j1, k1 < N1 and 0 ≤ j2, k2 < N2.
Defining four further integers p, q, r, s such that

pN2 = rN1 + 1; qN1 = sN2 + 1

where 0 < p, s < N1 and 0 < q, r < N2 the Ruritanian map is given by

j1 = (pj) mod N1; j2 = (qj) mod N2

k1 = (pk) mod N1; k2 = (qk) mod N2

7



with inverse

j = (j1N2 + j2N1) mod N ;

k = (k1N2 + k2N1) mod N. (20)

The Ruritanian map has a simple representation in tabular form. An example for the case of N = 12,
i.e. N1 = 4 and N2 = 3, is shown in Table 1. For each value of j1 down the table the values of j2 increase

0 1 2 j2
0 0 4 8
1 3 7 11
2 6 10 2
3 9 1 5
j1

(modulo N) across the table in steps of N/N2, and vice versa. This observation allows the Ruritanian
map to be implemented quite easily through suitable indexing of the transform elements.

Substituting the inverse map (20) into the DFT definition (16) yields

F (k1, k2) =

N2−1
∑

k2=0

[

N1−1
∑

k1=0

f(j1, j2)ω
N2j1k1

N1

]

ωN1j2j2
N2

(21)

and the original one–dimensional DFT of size N has been factorised into a two–dimensional DFT of size
N1 by N2. This may be handled in the same manner as any other two–dimensional transform. Clearly, if
either of N1 and N2 is a power of a small prime number then the prime factor algorithm may be used to
compute the corresponding set of short one–dimensional transforms. The only complication arises from
the appearance of the factors N1 and N2 in the exponents of ω in each of the short transforms. This
may be interpreted as a rotation of each transform. If a DFT of length Ni is modified such that ωNi

is
replaced by ωr

Ni
, where r is an integer, then the transform is rotated such that the ordering of the output

data is changed from [0, 1, 2, . . . , Ni − 1] to [0, r mod Ni, 2r mod Ni, . . . , (Ni − 1)r mod Ni], while the
actual output values remain unaffected.

The result (21) for N = N1N2 can be generalised quite easily to the case N = N1N2 . . .Nn where
all the Ni are mutually prime, and converts the original one–dimensional transform to a n–dimensional
transform with rotations:

F (k1, k2, . . . , kn) =
Nn−1
∑

kn=0

. . .

N2−1
∑

k2=0

N1−1
∑

k1=0

f(j1, j2, . . . , jn)ω
j1k1N/N1

N1
ω

j2j2N/N2

N2
. . . ω

jnjnN/Nn

Nn
.

(22)

The rotated transform may be repesented by the matrix W
[r]
N (j, k) = ωrjk

N , which is simply the matrix
WN with each element raised to the power r. In this notation the factorisation (22) may be written as

WN = R−1
(

W
[N/Nn]
Nn

× . . . × W
[N/N2]
N2

× W
[N/N1]
N1

)

R

where R is the permutation matrix corresponding to the Ruritanian map, and the operator × denotes a
Kronecker product. Note that the rotation N/Ni for each short transform operation is evaluated modulo
Ni. The Ruritanian map can also be generalised to the case of N = N1N2 . . . Nn simply by extending
the tabular representation to n dimensions, with increments of N/Ni in the i–th dimension.

Implementation of the general case N = N1N2 . . . Nn, where each Ni is a power of a different small
prime number, requires only a slight modification to the individual radix–i prime factor transforms in
order to accommodate the necessary rotation ri. This is accomplished by raising all twiddle factors to
the power ri, and by making use of the indexing logic to reorder the input values to each transform.

8



Interpolation using Fourier Transform

Once the discrete Fourier transform Fk of a sampled function fj has been obtained, the transform may
be used to evaluate the original function in a straightforward manner at points that do not necessarily
coincide with the sample points. If the sample points are denoted by x = jδx, where δx is the sampling
interval, then any other point may be described as x + ∆x = (j + ∆j)δx, where ∆x is the distance from
x and ∆j is the corresponding number of sampling intervals. Normally ∆x < δx and 0 < ∆j < 1, but
this is not a necessary restriction. The interpolation formula is a simple extension of the discrete inverse
Fourier transform (6):

fj+∆j =
1

Nδx

N/2
∑

k=−N/2

Fk exp (−2πik[j + ∆j]/N)

=
1

Nδx

N/2
∑

k=−N/2

[Fk exp (−2πik∆j/N)] exp (−2πijk/N) (23)

Thus the procedure for interpolation is to multiply each element of the transform F (k) by the factor
exp (−2πik∆j/N) and then take the inverse transform. Clearly this procedure is applicable only for a
fixed ∆x, i.e. a fixed offset from each sample point. A common requirement is for midpoint interpolation,
where ∆x = δx/2 and so ∆j = 1/2.

Convolution using Fourier Transform

The convolution of two functions f(x) and g(x) is given by the integral

cconv[f, g](x) =

∫

∞

−∞

f(x − x′)g(x′)dx′ (24)

In general the functions f and g are complex–valued, but in practice they are often purely real. Note
that it is easy to show that cconv[f, g](x) = cconv[g, f ](x). The convolution theorem states that the Fourier
transform Cconv[f, g](k̄) of cconv[f, g](x) is given by

Cconv[f, g](k̄) = F (k̄)G(k̄) (25)

where F (k̄) and G(k̄) are the Fourier transforms of f(x) and g(x) respectively. Thus a convolution in
physical space transforms to a simple product in wavenumber space (and vice versa).

In discrete form the convolution integral becomes the sum

cconv
j [f, g] = δx

N−1
∑

m=0

fj−mgm (26)

where j = 0 . . .N −1 and the functions f and g are each assumed to be periodic on the interval L = Nδx.
The discrete convolution theorem states that the discrete Fourier transform Cconv

k [f, g] of cconv
j [f, g] is

given by
Cconv

k [f, g] = FkGk (27)

where Fk and Gk are the discrete Fourier transforms of fj and gj respectively.
Evaluation of the discrete convolution (19) requires O(N) multiplications and additions for each value

of j, and the total is therefore O(N2). This operation count may be greatly reduced by using the FFT to
evaluate Fk and Gk, carrying out the complex multiplication in wavenumber space, and using the FFT
once again to evaluate the inverse transform. This procedure is strictly valid only if the discrete functions
fj and gj are periodic on an interval of length N , where N is a suitable number (e.g. a power of two) for
efficient use of the FFT.

9



For periodic functions it is possible to rewrite the discrete convolution (19) as

cconv
j [f, g] = δx

N/2
∑

m=−N/2+1

fj−mgm (28)

where now j = −N/2 + 1 . . .N/2. Periodicity ensures that the values of cj in (21) for j negative are
precisely the same as those for N/2 + 1 ≤ j ≤ N − 1 in the previous expression (19). For suitable N
the FFT may be applied exactly as before, with the interpretation that gj and cj are now defined for
−N/2 + 1 ≤ j ≤ N/2, while fj remains unaffected on 0 ≤ j ≤ N − 1.

In practice the discrete functions of interest often do not satisfy the requirements of periodicity on a
suitable length N , and in order to allow the use of the FFT some zero–padding is required. The discrete
convolution is used in the form (21), and the function fj may be padded with zeros at one end from
its natural length Nf − 1 up to N − 1. The function gj must be padded at both ends from its natural
range −N−

g . . . N+
g out to −N/2 + 1 . . .N/2. Care must be taken to avoid contamination of the true

convolution through end effects, and a minimum number of zeros is required equal to the maximum
positive or negative non–zero extent of gj, whichever is greater. The convolution cj evaluated using this
procedure is correct over the range 0 ≤ j ≤ Nf − 1.

Correlation using Fourier Transform

The correlation of two functions f(x) and g(x) is given by the integral

ccorr[f, g](x) =

∫

∞

−∞

f(x + x′)g(x′)dx′ (29)

Again in general the functions f and g are complex–valued in principle, and the symmetry condition for
correlation is ccorr[f, g](x) = ccorr[g, f ](−x). The correlation theorem states that the Fourier transform
Ccorr[f, g](k̄) of ccorr[f, g](x) is given by

Ccorr[f, g](k̄) = F (k̄)G(−̄k) (30)

where F (k̄) and G(k̄) are the Fourier transforms of f(x) and g(x) respectively.
The discrete correlation is given by

ccorr
j [f, g] = δx

N−1
∑

m=0

fj+mgm (31)

and the discrete correlation theorem states that the discrete Fourier transform Ccorr
k [f, g] of ccorr

j [f, g] is
given by

Ccorr
k [f, g] = FkG−k (32)

where Fk and Gk are the discrete Fourier transforms of fj and gj respectively.
The operation count for the evaluation of the discrete correlation (24) is O(N2), and the FFT may

be used as above to speed it up. Again, the use of the FFT is strictly applicable only for functions f and
g that are periodic on a suitable length N . Zero–padding may be used as necessary, subject to the same
considerations as for the discrete convolution.

Fast Fourier Transform for Arbitrary Dataset Size

A fast Fourier transform algorithm for an arbitrary dataset size N has been given by Bluestein [10], and
is sometimes called the chirp–z algorithm. The forward transform is written as

Fk = δx

N−1
∑

j=0

fjW
jk, k = −N/2, . . . , N/2 (33)

10



where W = exp (2πi/N), and is then expanded as

Fk = δx

N−1
∑

j=0

fjW
jk+(j2

−j2+k2
−k2)/2

= δx W k2/2
N−1
∑

j=0

(

fjW
j2/2

)

W−(k−j)2/2

= δx W k2/2
N−1
∑

j=0

gjhk−j (34)

where gj = fjW
j2/2 and hk−j = W−(k−j)2/2. Equation (27) is in the form of a discrete convolution

between the functions g and h. Note that the limits on k in (26) are written to make use of the same
shorthand as the DFT in (5) and (6), and that the transform Fk consists of N complex elements. Thus
the convolution must produce N uncontaminated values, and in order to do so the discrete function
hk−j must be of length 2N − 1 at least. The convolution may be evaluated using the FFT algorithm as
described above. The dataset gj must be evaluated for j = 0, . . . , N − 1 and zero–padded, first up to
2N − 1 and then up to the next size suitable for efficient use of the FFT. It is convenient to take k to
run from 0 to N − 1 so that the dataset hm may be evaluated for the range m = −N + 1, . . . , N − 1, and
then zero–padded (at both ends) up to the required size for the FFT. With this choice of indexing the

factors W j2/2 and W k2/2 are identical and also equal to the positive half of hm. The augmented datasets
containing g and h are each transformed using the FFT and the product of the transforms is obtained
by direct multiplication in the transform space. Inverse transformation then yields the raw convolution
which must be multiplied by W k2/2 to produce Fk, k = 0, . . . , N−1. Periodicity ensures that the elements
k = N/2 + 1, . . . , N − 1 of Fk are identically equal to those for k = −N/2 + 1, . . . ,−1.

The inverse transform may be treated similarly. Writing

fj =
1

Nδx

N/2
∑

k=−N/2

FkW̄ jk, j = 0, . . . , N − 1 (35)

where W̄ = exp (−2πi/N), the expansion becomes

fj =
1

Nδx

N/2
∑

k=−N/2

FkW̄ jk+(j2
−j2+k2

−k2)/2

=
1

Nδx
W̄ j2/2

N/2
∑

k=−N/2

(

FkW̄ k2/2
)

W̄−(j−k)2/2

=
1

Nδx
W̄ j2/2

N/2
∑

k=−N/2

GkHj−k (36)

where Gk = FkW̄ k2/2 and Hj−k = W̄−(j−k)2/2. Again, the result is in the form of a discrete convolution,
and the evaluation proceeds in precisely the same manner as for the forward transform.

Fourier Transform of Two Real Functions

For real–valued datasets a worthwhile saving in computational cost may be achieved by computing two
transforms simultaneously. Two real–valued datasets fj and gj each containing N real numbers may be
combined to form a single complex–valued dataset hj = fj + igj, containing N complex numbers. The

11



DFT of hj is Hk, which also contains N complex numbers and may be expressed as Hk = Fk + iGk,
where Fk and Gk are the DFTs of fj and gj respectively. It is then necessary to extract the individual
transforms Fk and Gk from the combined transform Hk. In general Fk and Gk each contain N complex
values, but since fj and gj are real the symmetry conditions are

Fk = F ∗

N−k

Gk = G∗

N−k (37)

Thus H∗

N−k = F ∗

N−k − iG∗

N−k = Fk − iGk, and the real and imaginary parts of the separate transforms
Fk and Gk may be expressed as

FR
k + iF I

k =
1

2

(

HR
N−k + HR

k

)

−
1

2
i
(

HI
N−k − HI

k

)

GR
k + iGI

k =
1

2

(

HI
N−k + HI

k

)

+
1

2
i
(

HR
N−k − HR

k

)

(38)

Note that by symmetry the transform elements F0 and FN/2, and also the elements G0 and GN/2, are
real and independent. Symmetry also implies that only half of each transform need be stored, since the
other half may be generated as required using (30).

Evaluation of the inverse transforms is straightforward. The two sets of (complex) transform values
Fk and Gk may be combined to form the single complex dataset Hk = Fk + iGk, whereupon an inverse
DFT at once yields hj = fj + igj.

Fourier Transform of Single Real Function

Another way to treat a real dataset fj , j = 0 . . .N − 1, is to pack it into a complex dataset of half the
length. Taking even and odd elements as the real and imaginary parts respectively produces the complex
dataset hj = f2j + if2j+1, j = 0 . . .N/2 + 1. The DFT is Hk = F e

k + iF o
k , k = 0 . . .N/2 + 1, where F e

k

(F o
k ) is the DFT of the even (odd) elements of the original dataset fj. Since the even and odd elements

of fj each constitute a real dataset, the process of extracting F e
k and F o

k from Hk is precisely the same
as that described above for two unrelated real datasets:

F eR
k + iF eI

k =
1

2

(

HR
N−k + HR

k

)

−
1

2
i
(

HI
N−k − HI

k

)

F oR
k + iF oI

k =
1

2

(

HI
N−k + HI

k

)

+
1

2
i
(

HR
N−k − HR

k

)

(39)

Note that by symmetry the transform elements F e
0 and F e

N/2, and also the elements F o
0 and F o

N/2, are
real and independent. Finally, according to the Danielson–Lanczos formula the transform Fk of the full
original dataset fj may be recovered using

Fk = F e
k + exp (2πik/N)F o

k (40)

for k = 0 . . .N − 1. By symmetry, F0 and FN/2 are real and independent, and again by symmetry it is
necessary to store only half of the transform, since F ∗

N−k = Fk.
The inverse transform proceeds by evaluating the even and odd transforms according to

F e
k =

1

2

(

Fk + F ∗

N/2−k

)

F o
k =

1

2

(

Fk − F ∗

N/2−k

)

exp (−2πik/N) (41)

and then forming the combined transform Hk = F e
k + iF o

k . The inverse DFT at once yields hj and hence
fj .

12



Fourier Transforms in Parallel

The use of parallel computers for DNS and LES is becoming widespread, and there is a requirement
for Fourier transform methods that are compatible with current parallel architectures. Fourier trans-
formation is by nature an integral operation, and the DFT brings in every element of the transform
dataset with equal weight into a single global summation. The heirarchical structure of the FFT algo-
rithm is based from the outset on a global approach and again requires equal access to every element
of the dataset. On shared–memory parallel computers there is no difficulty, since each processor can
address all areas of memory, subject only to minor penalties in access time. On distributed–memory
architectures a large dataset must be split between the memory partitions associated with many different
processors, and a message–passing strategy is normally used to transfer data from one partition to an-
other. When a processor routinely requires data from remote partitions this approach necessarily incurs
much larger computational penalties, and makes Fourier transformation of large datasets an expensive
and inconvenient procedure.

At present the best strategy for distributed parallel Fourier transforms appears to lie in gathering
together all of the component parts of a single dataset into the memory partition of a single processor.
The transform may then be carried out locally using the FFT, and the component parts of the transform
may then be scattered back to their points of origin. Given a dataset of size N divided up into P
approximately equal partitions the computational cost is of order 2(P − 1)t + N log2 N , where t is the
average time to effect a data–transfer using message–passing. A drawback is that this strategy is not
scalable, in the sense that it requires sufficent memory to accommodate the entire dataset to be available
within the memory partition of a single processor. In practice this is reasonable for one–dimensional
datasets.

The development of genuinely parallel Fourier transform algorithms remains an active area of research,
with emphasis on multidimensional transforms in a massively–parallel distributed–memory environment
[11].

Note on Evaluation of Trigonometrical Functions

In the computation of discrete Fourier transforms it is often necessary to evaluate terms of the form

exp (ikθ) = cos kθ + i sinkθ

repeatedly for successive values of the integer k, while the angle θ remains fixed. The computational
cost of repeated calls to the mathematical functions sin and cos can be high, and it is significantly more
efficient to use the recurrence relations

cos kθ = cos θ cos (k − 1)θ − sin θ sin (k − 1)θ

sin kθ = sin θ cos (k − 1)θ + cos θ sin (k − 1)θ

The recurrences are initialised by evaluating cos θ and sin θ once each, and no further mathematical
function calls are required. Setting cos kθ = 1 and sin kθ = 0 for k = 0 the recurrences may be used to
obtain sines and cosines for any positive k.

13



References

[1] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery: Numerical Recipes, Cambridge Uni-
versity Press, 3rd ed., 2007.

[2] E.O. Brigham: The Fast Fourier Transform, Prentice–Hall, 1968.

[3] G.K. Batchelor: The Theory of Homogeneous Turbulence, Cambridge University Press, 1953.

[4] C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang: Spectral Methods in Fluid Dynamics, Springer–
Verlag, 1988.

[5] S.A. Orszag, Numerical methods for the simulation of turbulence, Phys. Fluids (suppl. II), 250–257,
1969.

[6] M.J. Lighthill: Fourier Analysis and Generalised Functions, Cambridge University Press, 1972.

[7] J.W. Cooley, J.W. Tukey: An algorithm for the machine calculation of complex Fourier series, Math.
Comp. 19, 297–301, 1965.

[8] C. Temperton: Self–sorting in–place fast Fourier transforms, SIAM J. Sci. Stat. Comp. 12, 808–823,
1991.

[9] C. Temperton: A generalised prime factor FFT algorithm for any N = 2p3q5r, SIAM J. Sci. Stat.
Comp. 13, 676–686, 1992.

[10] L.I. Bluestein: A linear filtering approach to the computation of the discrete Fourier transform,
Nerem Record, 218–219, 1968.

[11] R.J. Allan: Parallel application software on high performance computers: serial and parallel FFT
routines, CSED Report, Daresbury Laboratory, UK, ISSN 1362–0193, 2nd ed., 1999.

14



Routines

A set of FORTRAN subroutines for Fourier transformation and related tasks has been developed and is
described below. The interface to each routine is given together with a brief description of its purpose.
Any significant workspace requirements are indicated. The source code for all of these routines is freely
available from the author.

DFT routines

SUBROUTINE DFTF1D(CARRAY,NX,IFORW)

INTEGER NX,IFORW

DOUBLE PRECISION CARRAY(2*NX)

This routine carries out a discrete Fourier transform using equation (5), or alternatively a discrete inverse
transform using equation (6). The array CARRAY is assumed to contain NX complex numbers arranged as
(real part, imaginary part) pairs. Indexing of both physical space and Fourier space data is standard.
The value of NX can be any positive integer, even or odd, and the execution time of the routine scales as
NX2 for any value of NX. The routine requires one workspace array of size 2*NFTMAX and four workspace
arrays of size NFTMAX which are all declared internally. The value of NFTMAX is equal to the maximum
value of NX that can be handled by the routine, and is set nominally to 1024. This value may be increased
or decreased as required. The parameter IFORW must be set to 1 for a forward transform or to -1 for an
inverse transform. In either case the transform is returned in CARRAY as a set of NX complex numbers,
with standard indexing. Note that the inverse transform is left unscaled, i.e. there is no division by NX.

SUBROUTINE DFTP1D(CARRAY,NX,IFORW)

INTEGER NX,IFORW

DOUBLE PRECISION CARRAY(2*NX)

This routine carries out a discrete Fourier transform in exactly the same manner as DFTF1D, but with the
necessary sine and cosine functions precomputed (using subroutine DFTPIN) in order to save execution
time where repeated transforms are required. All variables are treated in the same way as for subroutine
DFTF1D. Workspace requirements are for one array of size 2*NFTMAX and four of size NFTMAX, with two of
the smaller arrays held in COMMON and shared with subroutine DFTPIN. Again, NFTMAX is set to a nominal
value of 1024 but may be adjusted as required.

SUBROUTINE DFTPIN(NX,IFORW)

INTEGER NX,IFORW

This routine precomputes the necessary sine and cosine functions for subroutine DFTP1D. Workspace
requirements are confined to two arrays of size NFTMAX held in COMMON and shared with DFTP1D. The
intention is that DFTPIN should be called once for each new value of NX and/or IFORW, thus allowing
repeated calls to DFTP1D until a new size of transform or a change of transform type is required.

FFT routines: Cooley–Tukey algorithm (radix 2 only)

SUBROUTINE FFTF1D(CARRAY,NX,IFORW)

INTEGER NX,IFORW

DOUBLE PRECISION CARRAY(2*NX)

This routine computes a 1D Fast Fourier Transform using the Cooley–Tukey radix–2 algorithm. NX must
be an integer power of two. No workspace is required since the transform is done in place. An upper
limit on NX is fixed by the size of the bit–reversal arrays, which are set to a nominal size NBTMAX = 12

15



integer elements corresponding to NX = 211 = 1024. This may be changed as required. The execution
time scales as NX log2 (NX) for allowed values of NX. Note that the inverse transform is left unscaled.

SUBROUTINE FFTB1D(CARRAY,NX,IFORW)

INTEGER NX,IFORW

DOUBLE PRECISION CARRAY(2*NX)

This routine carries out a 1D Fast Fourier Transform in exactly the same manner as FFTF1D, but with the
bit reversal index table precomputed (using subroutine FFTBIN) in order to save execution time where
repeated transforms are required. All variables are treated in the same way as for subroutine FFTF1D.
In particular NX must be an integer power of two. Workspace requirements are for one integer array of
size NFTMAX held in COMMON with subroutine FFTBIN and used to form the bit reversal index table. Again,
NFTMAX is set to a nominal value of 1024 but may be adjusted as required.

SUBROUTINE FFTBIN(NX,IFORW)

INTEGER NX,IFORW

This routine precomputes the bit reversal index table for subroutine FFTB1D. Again, NX must be an
integer power of two. Workspace requirements are confined to a single integer array of size NFTMAX held
in COMMON and shared with FFTB1D. The intention is that FFTBIN should be called once for each new value
of NX and/or IFORW, thus allowing repeated calls to FFTB1D until a new size of transform or a change of
transform type is required.

SUBROUTINE FFTR1D(CARRAY,NX,IFORW)

INTEGER NX,IFORW

DOUBLE PRECISION CARRAY(NX)

This routine computes the 1D Fast Fourier Transform of a single real–valued dataset. CARRAY is an array
of NX (double precision) real numbers, and NX must be an integer power of two. Workspace requirements
are for two arrays of size NFTMAX, both declared internally. The value of NFTMAX is set nominally to 1024
but may be changed if necessary. If IFORW is set to 1 the routine carries out a forward transform, taking
the contents of CARRAY on entry as a real dataset in physical space. On exit, CARRAY contains the NX/2

complex values of the positive–wavenumber half of the Fourier transform. The indexing is standard,
except that the first complex array element contains the (real) transform values corresponding to k = 0
and k = NX/2. For an inverse transform (with IFORW set to -1) the data must be supplied in the same
format. Note that the inverse transform is left unscaled.

SUBROUTINE FFTT1D(ARRAY1,ARRAY2,NX,IFORW)

INTEGER NX,IFORW

DOUBLE PRECISION CARRAY(NX)

This routine computes the 1D Fast Fourier Transform of two real–valued datasets. The interface is where
each of ARRAY1 and ARRAY2 is an array of NX (double precision) real numbers, and NX must be an integer
power of two. Workspace requirements are for one array of size 2*NFTMAX, declared internally. The value
of NFTMAX is set nominally to 1024 but may be changed if necessary. For a forward transform (IFORW
equal to 1) the contents of ARRAY1 and ARRAY2 are each taken on entry as a real dataset in physical
space. On exit, each array contains the NX/2 complex values of the positive–wavenumber half of the
Fourier transform of the corresponding dataset. The indexing is standard, except that the first complex
array element contains the (real) transform values corresponding to k = 0 and k=NX/2. For an inverse
transform (with IFORW set to -1) the data must be supplied in the same format. Note that the inverse
transform is left unscaled.

SUBROUTINE FFTF2D(CARRRE,CARRIM,NXPHYS,NYPHYS,NX,NY,IFORW)

INTEGER NXPHYS,NYPHYS,NX,NY,IFORW

DOUBLE PRECISION CARRRE(NXPHYS,NYPHYS),CARRIM(NXPHYS,NYPHYS)

16



This routine computes the Fourier transform of a two–dimensional dataset using the FFT algorithm.
CARRRE and CARRIM are (double precision) real arrays of physical dimension NXPHYS by NYPHYS containing
respectively the real and imaginary parts of the input dataset which is of size NX by NY. Both NX and NY

must be powers of two. A single workspace array is required, of size NFTMAX with NFTMAX set nominally
to 1024. This defines the maximum size of any one dimension and may be changed as required.

SUBROUTINE FFTF3D(CARRRE,CARRIM,NXPHYS,NYPHYS,NZPHYS,NX,NY,NZ,IFORW)

INTEGER NXPHYS,NYPHYS,NZPHYS,NX,NY,NZ,IFORW

DOUBLE PRECISION CARRRE(NXPHYS,NYPHYS,NZPHYS)

DOUBLE PRECISION CARRIM(NXPHYS,NYPHYS,NZPHYS)

This routine computes the Fourier transform of a three–dimensional dataset using the FFT algorithm.
CARRRE and CARRIM are (double precision) real arrays of size NXPHYS by NYPHYS by NZPHYS containing
respectively the real and imaginary parts of the input dataset which is of size NX by NY by NZ. All of NX,
NY and NZ must be powers of two. A single workspace array is required, of size NFTMAX with NFTMAX set
nominally to 1024. This defines the maximum size of any one dimension and may be changed as required.

SUBROUTINE FFTINT(CARRAY,NX,FRACT)

INTEGER NX

DOUBLE PRECISION CARRAY(2*NX),FRACT

This routine interpolates a function using the FFT. CARRAY is a complex array of size NX containing the
function to be interpolated. In order to allow the use of the FFT, NX must be a power of two. The (double
precision) real number FRACT contains the fractional offset ∆x that defines the set of points xj + ∆x at
which to carry out the interpolation. The interpolated data is returned in CARRAY.

Routines for convolution and correlation

SUBROUTINE CONDIR(FFUNCT,GFUNCT,ANSWER,NX)

INTEGER NX

DOUBLE PRECISION FFUNCT(NX),GFUNCT(NX),ANSWER(NX)

This routine computes the discrete convolution of two real–valued functions. FFUNCT and GFUNCT are
(double precision) real arrays of size NX containing the datasets whose convolution will be returned in
ANSWER. There is no restriction on the value of NX. No workspace is required. The execution time required
for this routine scales as NX2.

SUBROUTINE CONFFT(FFUNCT,GFUNCT,ANSWER,NX)

INTEGER NX

DOUBLE PRECISION FFUNCT(NX),GFUNCT(NX),ANSWER(NX)

This routine computes the discrete convolution of two real–valued functions using the FFT algorithm.
FFUNCT and GFUNCT are (double precision) real arrays of size NX containing the datasets whose correlation
will be returned in ANSWER. The value of NX must be an integer power of two. The workspace requirement
is for two arrays of size 2*NFTMAX, both declared internally. The execution time required for this routine
scales as NX log2 (NX) for allowed values of NX.

SUBROUTINE CORDIR(FFUNCT,GFUNCT,ANSWER,NX)

INTEGER NX

DOUBLE PRECISION FFUNCT(NX),GFUNCT(NX),ANSWER(NX)

This routine computes the discrete correlation between two real–valued functions. FFUNCT and GFUNCT

are (double precision) real arrays of size NX containing the datasets whose correlation will be returned in
ANSWER. There is no restriction on the value of NX. No workspace is required. The execution time required
for this routine scales as NX2.

17



SUBROUTINE CORFFT(FFUNCT,GFUNCT,ANSWER,NX)

INTEGER NX

DOUBLE PRECISION FFUNCT(NX),GFUNCT(NX),ANSWER(NX)

This routine computes the discrete correlation between two real–valued functions using the FFT algo-
rithm. FFUNCT and GFUNCT are (double precision) real arrays of size NX containing the datasets whose
correlation will be returned in ANSWER. The value of NX must be an integer power of two. The workspace
requirement is for two arrays of size 2*NFTMAX, both declared internally. The execution time required for
this routine scales as NX log2 (NX) for allowed values of NX.

FFT Routines: Bluestein algorithm (arbitrary length)

SUBROUTINE FFTC1D(CARRAY,NX,IFORW)

INTEGER NX,IFORW

DOUBLE PRECISION CARRAY(2*NX)

This routine computes a 1D discrete Fourier transform using the convolutive method described above.
CARRAY contains complex data as for DFTF1D and FFTF1D, and NX may take any value. Three workspace
arrays are required, one of size -NFTMAX:NFTMAX and two of size 2*NFTMAX, and these are declared inter-
nally. The value of NFTMAX is set nominally to 1024, but this may be changed if necessary. Execution
time for this routine scales as NT log2 (NT) where NT is the smallest integer power of two greater than
2*NX-1. Note that the inverse transform is left unscaled.

SUBROUTINE FFTP1D(CARRAY,NX,IFORW)

INTEGER NX,IFORW

DOUBLE PRECISION CARRAY(2*NX)

This routine carries out a discrete Fourier transform in exactly the same manner as FFTC1D, but with
the necessary coefficient functions precomputed (using subroutine FFTPIN) in order to save execution
time where repeated transforms are required. All variables are treated in the same way as for subrou-
tine FFTC1D. Workspace requirements are for one array of size -NFTMAX:NFTMAX and two arrays of size
2*NFTMAX, all held in COMMON and shared with subroutine FFTPIN. Again, NFTMAX is set to a nominal value
of 1024 but may be adjusted as required.

SUBROUTINE FFTPIN(NX,IFORW)

INTEGER NX,IFORW

This routine precomputes the necessary coefficient functions for subroutine FFTP1D. Workspace require-
ments are for one array of size -NFTMAX:NFTMAX and two arrays of size 2*NFTMAX, all held in COMMON and
shared with FFTP1D. The intention is that FFTPIN should be called once for each new value of NX and/or
IFORW, thus allowing repeated calls to FFTP1D until a new size of transform or a change of transform type
is required.

SUBROUTINE FFTA1D(CARRAY,NX,IFORW)

INTEGER NX,IFORW

DOUBLE PRECISION CARRAY(2*NX)

This routine computes a 1D discrete Fourier transform using either the FFT or the convolutive method
described above. CARRAY contains complex data as for FFTF1D and FFTC1D, and NX may take any value.
Workspace arrays are required as for both of these routines. If NX is a power of two then the FFT is used,
otherwise the convolutive algorithm is selected.

18



FFT routines: Temperton algorithm

SUBROUTINE FFTPF2(CARRAY,NX,IFORW)

INTEGER NX,IFORW

DOUBLE PRECISION CARRAY(2*NX)

This routine computes the fast Fourier transform using the Temperton prime factor algorithm. NX must
be an integer power of two. No workspace is required since the transform is done in place, but two arrays
each of length NFTMAX are used internally to store trigonometric factors. NFTMAX is set nominally to 1024
and may be changed if required.

SUBROUTINE FFTPF3(CARRAY,NX,IFORW)

INTEGER NX,IFORW

DOUBLE PRECISION CARRAY(2*NX)

As FFTPF2, but for NX equal to an integer power of 3.

SUBROUTINE FFTPF5(CARRAY,NX,IFORW)

INTEGER NX,IFORW

DOUBLE PRECISION CARRAY(2*NX)

As FFTPF2, but for NX equal to an integer power of 5.

SUBROUTINE FFTPF7(CARRAY,NX,IFORW)

INTEGER NX,IFORW

DOUBLE PRECISION CARRAY(2*NX)

As FFTPF2, but for NX equal to an integer power of 7.

SUBROUTINE FFTPFA(CARRAY,NX,IFORW,NRADIX)

INTEGER NX,IFORW,NRADIX

DOUBLE PRECISION CARRAY(2*NX)

As FFTPF2, but for NX equal to an integer power of an arbitrary radix specified as NRADIX. The maximum
value of NRADIX is defined internally as NRDXMX which is set nominally to 11. This value may be changed
as required.

FFT routines: Temperton algorithm with rotations

SUBROUTINE FFTPR2(CARRAY,NX,NI,IFORW)

INTEGER NX,NI,IFORW

DOUBLE PRECISION CARRAY(2*NX)

This routine computes the fast Fourier transform using the Temperton prime factor algorithm with
rotations. NX must be an integer power of two, and NI is the value of the required rotation. No workspace
is required since the transform is done in place, but two arrays each of length NFTMAX are used internally
to store trigonometric factors. NFTMAX is set nominally to 1024 and may be changed if required.

SUBROUTINE FFTPR3(CARRAY,NX,NI,IFORW)

INTEGER NX,NI,IFORW

DOUBLE PRECISION CARRAY(2*NX)

19



As FFTPR2, but for NX equal to an integer power of 3.

SUBROUTINE FFTPR5(CARRAY,NX,NI,IFORW)

INTEGER NX,NI,IFORW

DOUBLE PRECISION CARRAY(2*NX)

As FFTPR2, but for NX equal to an integer power of 5.

SUBROUTINE FFTPR7(CARRAY,NX,NI,IFORW)

INTEGER NX,NI,IFORW

DOUBLE PRECISION CARRAY(2*NX)

As FFTPR2, but for NX equal to an integer power of 7.

SUBROUTINE FFTPRA(CARRAY,NX,NI,IFORW,NRADIX)

INTEGER NX,NI,IFORW,NRADIX

DOUBLE PRECISION CARRAY(2*NX)

As FFTPR2, but for NX equal to an integer power of an arbitrary radix specified as NRADIX. The maximum
value of NRADIX is defined internally as NRDXMX which is set nominally to 11. This value may be changed
as required.

FFT routines: Temperton algorithm with precomputed rotations

SUBROUTINE FFTFR2(CARRAY,NX)

INTEGER NX

DOUBLE PRECISION CARRAY(2*NX)

This routine computes the fast Fourier transform using the Temperton prime factor algorithm with
precomputed rotations, and must be initialised using subroutine FFTNR2. NX must be an integer power of
two. No workspace is required since the transform is done in place, but two arrays each of length NFTMAX

are held in COMMON with subroutine FFTNR2 to store trigonometric factors. NFTMAX is set nominally to
1024 and may be changed if required.

SUBROUTINE FFTFR3(CARRAY,NX)

INTEGER NX

DOUBLE PRECISION CARRAY(2*NX)

As FFTFR2, but for NX equal to an integer power of 3. Initialised by subroutine FFTNR3.

SUBROUTINE FFTFR5(CARRAY,NX)

INTEGER NX

DOUBLE PRECISION CARRAY(2*NX)

As FFTFR2, but for NX equal to an integer power of 5. Initialised by subroutine FFTNR5.

SUBROUTINE FFTFR7(CARRAY,NX)

INTEGER NX

DOUBLE PRECISION CARRAY(2*NX)

20



As FFTFR2, but for NX equal to an integer power of 7. Initialised by subroutine FFTNR7.

SUBROUTINE FFTFRA(CARRAY,NX)

INTEGER NX,NRADIX

DOUBLE PRECISION CARRAY(2*NX)

As FFTFR2, but for NX equal to an integer power of an arbitrary radix. Initialised by subroutine FFTNRA.
NX must be an integer power of the radix specified in the call to subroutine FFTNRA. The maximum value
of the radix is defined internally as NRDXMX which is set nominally to 11. This value may be changed as
required.

SUBROUTINE FFTNR2(NX,NI,IFORW)

INTEGER NX,NI,IFORW

This routine precomputes the rotated trigonometric functions for subroutine FFTNR2. NX must be an
integer power of two and NI is the required rotation. Two arrays each of length NFTMAX are held in
COMMON with subroutine FFTFR2. The intention is that FFTNR2 should be called once for each new value of
NX, NI and/or IFORW, thus allowing repeated calls to FFTFR2 until a new size of transform, a new rotation
or a change of transform type is required.

SUBROUTINE FFTNR3(NX,NI,IFORW)

INTEGER NX,NI,IFORW

As FFTNR2 but for initialisation of radix 3 subroutine FFTFR3.

SUBROUTINE FFTNR5(NX,NI,IFORW)

INTEGER NX,NI,IFORW

As FFTNR2 but for initialisation of radix 5 subroutine FFTFR5.

SUBROUTINE FFTNR7(NX,NI,IFORW)

INTEGER NX,NI,IFORW

As FFTNR2 but for initialisation of radix 7 subroutine FFTFR7.

SUBROUTINE FFTNRA(NX,NI,IFORW,NRADIX)

INTEGER NX,NI,IFORW,NRADIX

This routine precomputes that rotated trigonometric functions for subroutine FFTFRA. The maximum
value of the radix NRADIX is defined internally as NRDXMX which is set nominally to 11. This value may
be changed as required.

FFT routines: multiple radix Temperton algorithm

SUBROUTINE FFTFFG(CARRAY,NX)

INTEGER NX

DOUBLE PRECISION CARRAY(2*NX)

This routine computes a fast Fourier transform using the Temperton prime factor algorithm for dataset
length NX = 2p3q5r7s11t. It is initialised by subroutine FFTNFG. This routine calls subroutines FFTFR2,
FFTFR3, FFTFR5, FFTFR7 and FFTFRA.

SUBROUTINE FFTNFG(NX,IFORW)

INTEGER NX,IFORW

This routine initialises subroutine FFTFFG. It calls subroutines FFTNR2, FFTNR3, FFTNR5, FFTNR7 and
FFTNRA.

21



FFT routines: Arbitrary length datasets (Temperton/Bluestein)

SUBROUTINE FFTGEN(CARRAY,NX)

INTEGER NX

DOUBLE PRECISION CARRAY(2*NX)

This routine computes a fast Fourier transform using the Temperton prime factor algorithm for dataset
length NX = 2p3q5r7s11t, and the Bluestein algorithm for all other dataset lengths. It is initialised by
subroutine FFTGIN, and calls subroutines FFTFR2, FFTFR3, FFTFR5, FFTFR7, FFTFRA and FFTP1D. Also
requires subroutine FFTF1D.

SUBROUTINE FFTGIN(NX,IFORW)

INTEGER NX,IFORW

This routine initialises subroutine FFTGEN, and calls subroutines FFTNR2, FFTNR3, FFTNR5, FFTNR7, FFTNRA
and FFTPIN. Also requires subroutine FFTF1D.

22


