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LES of Hydrogen Enriched Flames

PRECCINSTA premixed swirl burner (Chterev, 2019).

Target Flames

• Hydrogen enriched flames based on PRECCINSTA burner studied 

experimentally in DLR (Chterev, 2019).

• Technically premixed, swirl stabilized.

• Selected Operating conditions

Equivalence ratio 0.85

Thermal Power 23 kw

%Vol.H2 0%, 20%, 40%

Backgrounds

• Lean premixed combustion often exhibits thermoacoustic and 

hydrodynamic instability

• H2 combustion exhibits higher laminar flame speed, higher flame 

temperature and lower lean flammability.



Numerical Setups

Chemical Kinetics

• 15-step reduced mechanism based on GRI-Mech 3.0 (Lu, 2008)

Numerical setups

• In House compressible LES code: BOFFIN-LESc (Fredrich,2020)

• Non-reflective outflow boundary conditions at chamber outlet (Yoo, 

2005)

• Isothermal wall boundary condition

• Multiblock structured mesh ~2.7 million cells, including air plenum, 

swirler and combustion chamber

• Mesh independent study done in the same geometry in previous 

work (Fredrich,2020)

Numerical details

• Initialised for 6 flow-through times is enough for a statistically stationary flow to develop

• Statistic time-averaged over 6 flow-through times 

A view of the computational mesh.



Iso-thermal flow field 

Mean velocity fields and profiles at 4 downstream positions:
(a) axial mean velocity (b) radial mean velocity.

RMS velocity fields and profiles at 4 downstream positions:
(a) axial RMS velocity (b) radial RMS velocity.



Flame topology

Time averaged Heat release rate (HRR), line of sight integration

C1
0% H2

Mean Heat release rate in 3 cases investigated

Hydrogen addition results in 

• Higher heat release rate on average

• Shorter flame, closer to the combustor inlet

• More flash back, less lift off

C2
20% H2

C3
40% H2



Acoustic fluctuations 
Self-sustained limit cycle oscillations 

Pressure signals in air plenum (P-pl) and combustion chamber (P-ch) for Case 1
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Temporal variation of P-pl and P-ch
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Heat release rate (left) and axial velocity (right) in phase
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PSD of P’, FFT of HRR compared to EXP

C3
40% H2

C1
0% H2

EXP peak p’ 

• EXP p’ with estimation of damping wall effect ~13dB (Lourier,2017) 

• First peak frequencies matches – Helmholtz f, thermoacoustic oscillations

• Over predicted amplitude: both in C1 (8dB) and C3 (20dB)

• Coupled peak f of p’ and HRR in C1 and C3 

• Harmonics of dominant f in C1 and C3, subharmonic and its multiples in C1 

unstable stable 

PSD of Pch

FFT of HRR 



Velocity field

EXP

C1
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• Strong fluctuations coupled 

with pressure oscillations

• Observed in all three cases

• Mean velocity field deviation: 

overpredicted jet velocity, 

back flow in the centre region, 

narrower jet



Next Step

• Relative to the coupling of flame and pressure fluctuations: not observed in isothermal case 

• Varies with operation conditions c

Why so strong instabilities?

Next Step Work

• Extend the computational domain

• Different operating conditions study



Study of Noises Generated by Compositional 
Perturbations using LES



Introduction

Two categories of combustion noises in combustors (pressure fluctuations)

• Direct noise : caused by volume expansion due to unsteady heat released

• Indirect noise: unsteady heat released also generates temperature, compositional and vortical 

perturbations, which if accelerated can eventually generate acoustic noise

Indirect noises caused by compositional disturbances

• Incomplete premixed flames, fluctuations in equivalence ratios

• Target case: Compositional and entropy indirect noise generated in Cambridge Entropy 

Generator (CGW) Rig with non-isentropic convergent nozzle (Domenico,2021)

A schematic layout of the experimental configuration. Dimensions for the experimental
configuration.



Direct and indirect noise generation
One dimensional noise generation

direct noise indirect noise

compositional and entropic waves

• Pulse injection: last for 10ms, repetition rate: 0.25Hz (every 4 seconds)

• Acoustic wave travel speed: c; entropic and compositional wave travel speed: u

• Convective time 𝜏𝜏𝑐𝑐 = 𝐿𝐿𝑐𝑐/𝑢𝑢: time interval between generation of direct and indirect noise

• Reverberation: acoustic signals reflected in a acoustic chamber repeatedly in a short period of time (Rolland, 2018) 



Direct and indirect noise generation

Numerical Setups

• Computational Domain covers upstream pipe, convergent nozzle and 2.1m of downstream pipe

• Fully reflective inlet boundary, non-reflective outlet boundary 

• Mesh contains about 0.4m celss, clustered in nozzle and injection region

• Pressure signal phase averaged over 2 cycles 

Specific Objectives

• Direct and Indirect noise generation: probe in the upstream pipe

• Compare effect of different injection gases

• Validate the capability of BOFFIN-LESc in predicting combustion noises  

Test Cases: 2 gases, 2 injection positions (convective lengths)



Pressure fluctuations at upstream probe 

Long configuration (C1 and C3) 

• 0-tp: Pd generation

• tp-tc : Pd decay (decay fit line by 

reverberation model)

• tc-tc+tp: Pi generation

He CO2

C1 C3

• C1 and C3 have Similar direct noise amplitude

• Indirect noise: C1 negative, C3 positive caused by different gas molar mass compared to air

• Under predicted indirect noise amplitude in C3, good predicted tc 



Pressure fluctuations at upstream probe 

He CO2

C2 C4

Short configuration (C2 and C4) 

• tc ~ 0.01s, Pd and Pi overlapped

• Peak slightly under-predicted due to 

underpredicted Pi magnitude 

• Compositional entropic wave convection and dispersion

• Flow across nozzle not resolved: Mach number under predicted



Next Step 

• More data for phase averaged results

• Resolve nozzle flow: indirect noise generation, noise reflection at the nozzle

• Study compositional and entropic wave propagation in the upstream pipe, effect 

on indirect noise generation

• Downstream probe pressure signal  

Time series of Helium mass fraction in C1.
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