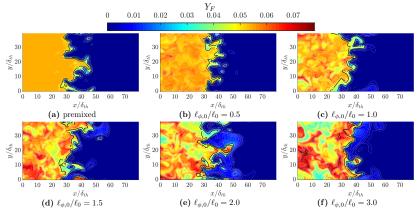
Scalar Forcing Methodology for Direct Numerical Simulations of Turbulent Stratified Mixture Combustion

Peter Brearley Umair Ahmed Nilanjan Chakraborty p.brearley@newcastle.ac.uk

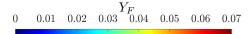
UKCTRF Conference 30th March 2021



What is Stratified Combustion?

- Stratified combustion occurs when the fuel-air mixture is inhomogeneous, but the range of equivalence ratio remains within the flammability limit.
- ▶ It allows a leaner unburned mixture to be used, reducing the burned gas temperature and lowering emissions.

What is Scalar Forcing?


Scalar forcing aims to maintain the root-mean-square of a fluctuating scalar field ψ by including a source term in its transport equation

$$\frac{\partial(\rho\psi)}{\partial t} + \frac{\partial(\rho u_k \psi)}{\partial x_k} = \frac{\partial}{\partial x_k} \left(\rho D \frac{\partial \psi}{\partial x_k} \right) + \rho f_\psi$$

- In stratified combustion, this scalar could be the mixture fraction ξ or equivalence ratio ϕ
- lacktriangle Choosing an appropriate f_{ψ} term for use in stratified combustion is the focus of this study.

Why is Scalar Forcing Necessary?

$$\langle \phi \rangle = 1.0$$
$$\phi' = 0.35$$
$$u'_0/S_L = 10$$

Mixing Scalar Stratified Flame Simulations

$\overline{u_0'/S_{L\langle\phi angle}}$	$\ell_{\xi,0}/\ell_0$	ℓ_0/δ_{th}	Da	Ka	$\langle \phi \rangle$	ϕ_0'	Grid size
		•	0.750	4.60			200 × 4002
4.0	premixed	3.0	0.750	4.62	1.0	0.35	800×400^2
4.0	0.5	3.0	0.750	4.62	1.0	0.35	800×400^2
4.0	1.0	3.0	0.750	4.62	1.0	0.35	800×400^2
4.0	2.0	3.0	0.750	4.62	1.0	0.35	800×400^{2}
4.0	3.0	3.0	0.750	4.62	1.0	0.35	800×400^{2}
8.0	premixed	3.0	0.375	13.1	1.0	0.35	800×400^{2}
8.0	0.5	3.0	0.375	13.1	1.0	0.35	800×400^{2}
8.0	1.0	3.0	0.375	13.1	1.0	0.35	800×400^{2}
8.0	2.0	3.0	0.375	13.1	1.0	0.35	800×400^{2}
8.0	3.0	3.0	0.375	13.1	1.0	0.35	800×400^{2}
10	premixed	3.0	0.3	18.3	1.0	0.35	800×400^{2}
10	0.5	3.0	0.3	18.3	1.0	0.35	800×400^{2}
10	1.0	3.0	0.3	18.3	1.0	0.35	800×400^{2}
10	2.0	3.0	0.3	18.3	1.0	0.35	800×400^{2}
10	3.0	3.0	0.3	18.3	1.0	0.35	800×400^{2}

¹Brearley, P., Ahmed, U., and Chakraborty, N. (2013). Physics of Fluids 32, 125111.

Problems With Linear Scalar Forcing Schemes

▶ Most scalar forcing schemes take inspiration from linear velocity forcing schemes where

$$f_{\psi} = C \psi'$$
 [2] or $f_{\psi} = C u'_i$ [3]

- ▶ However, turbulent velocity and scalar fields are fundamentally different.
 - The velocity field usually takes on a quasi-Gaussian distribution, whereas scalar fields commonly take on other distributions e.g. bimodal.
 - Scalar fields are often subject to strict bounds e.g. $0 \le Y_F \le 1$.
- Linear scalar forcing schemes might not be appropriate for stratified combustion.

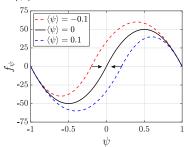
6 / 17

²Carroll, P. L., Verma, S., and Blanquart, G. (2013). Physics of Fluids 25, 095102.

³Overholt, M. R. and Pope, S. B. (1996). Physics of Fluids 8, 1328.

Scalar Forcing Scheme Used in This Work

- ▶ Daniel et al.⁴ proposed a scalar forcing term that can
 - Maintain the scalar root-mean-square fluctuation.
 - Be capable of producing a wide variety of probability density functions (PDFs).
 - Respect the scalars naturally occurring bounds.
- ► The scalar forcing scheme respects the bounds of the scalar by gradually switching off towards the scalar bounds.
- The forcing term is given by

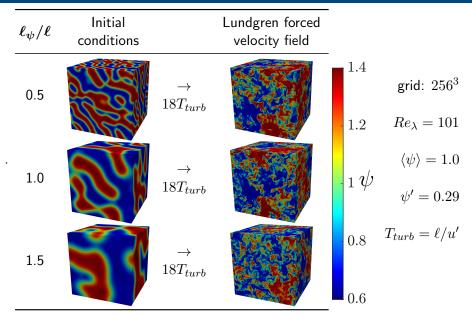

$$f_{\psi} = \begin{cases} -(\psi_{u} - \psi_{l})mK \left(\frac{\psi_{u} + \psi_{l} - 2\psi}{\psi_{u} - \psi_{l}}\right)^{n} \left(\frac{\psi - \psi_{l}}{\psi_{u} - \psi_{l}}\right)^{m} & \text{when } \psi \leq \psi_{m} \\ +(\psi_{u} - \psi_{l})mK \left(\frac{2\psi - \psi_{u} - \psi_{l}}{\psi_{u} - \psi_{l}}\right)^{n} \left(\frac{\psi_{u} - \psi}{\psi_{u} - \psi_{l}}\right)^{m} & \text{when } \psi > \psi_{m} \end{cases}$$

▶ It was derived by considering a hypothetical chemical reaction that converts a mixed fluid reactant into one of its two unmixed states.

⁴Daniel, D., Livescu, D. and Ryu, J. (2018). Physical Review Fluids 3, 094602.

Scalar Forcing Scheme Used in This Work

- ► The forcing scheme by Daniel et al.⁴ has been modified to better maintain the mean scalar.
- ▶ Otherwise, slight asymmetries in the initial conditions cause the scalar field to be transformed into a uniform state.
- ▶ The location where the forcing term crosses the x axis has been modified to be $K_m\langle\psi\rangle$, where K_m is the mean control constant.



⁴Daniel, D., Livescu, D. and Ryu, J. (2018). Physical Review Fluids 3, 094602.

Periodic Cube Bimodal Forced Scalar Simulations

ℓ_ψ/ℓ	Initial conditions		Decaying velocity field	_	
0.5		\rightarrow $18T_{turb}$		1.4	grid: 256 ³
		247.0	A. L.	- 1.2	$Re_{\lambda} = 101$
1.0	SU	\rightarrow		$_{1}\psi$	$\langle \psi \rangle = 1.0$
		$18T_{turb}$	The second	1 Ψ	$\psi' = 0.29$
1.5		\rightarrow	J. T.	0.8	$T_{turb} = \ell/u'$
1.5	5	$18T_{turb}$		0.6	

Periodic Cube Bimodal Forced Scalar Simulations

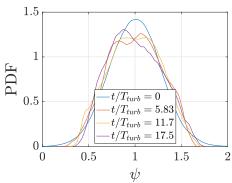
Periodic Cube Bimodal Forced Scalar Simulations

ℓ_ψ/ℓ	ψ PDF evolution	Length scale evolution
0.5		
1.0		
1.5		

Lundgren forcing

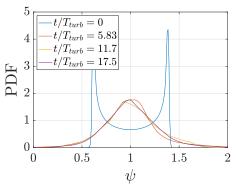
 ${\rm grid}\colon\thinspace 256^3$

 $Re_{\lambda} = 101$


 $\langle \psi \rangle = 1.0$

 $\psi' = 0.29$

 $T_{turb} = \ell/u'$


Periodic Cube Gaussian Forced Scalar Simulations

- The scalar forcing scheme can maintain any symmetric scalar distribution in the transition between Gaussian and bimodal.
- ► The figure below shows the forcing scheme maintaining a Gaussian distribution.

Linear Scalar Forcing with Bimodal Scalar Distributions

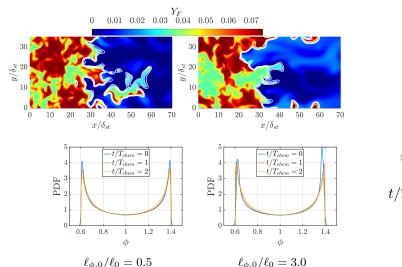
► Linear scalar forcing⁵ can maintain Gaussian scalar distributions very effectively, but cannot maintain other distributions.

⁵Carroll, P. L., Verma, S. and Blanquart, G. (2013). Phys. Fluids 25, 095102

Forced Scalar Stratified Flame Implementation

 At the end of each timestep, fuel and oxidiser mass fractions are evaluated by

$$Y_F = \xi Y_{F,\infty}$$
 $Y_O = (1 - \xi)Y_{O,\infty}$

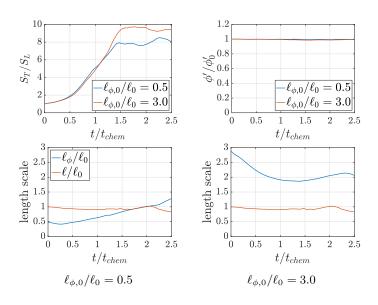

▶ Scalar forcing is applied only where c < 0.001, where c is the combustion progress variable given in stratified flames as

$$c = \frac{\xi Y_{F\infty} - Y_F}{\xi Y_{F\infty} - \max\left[0, \frac{\xi - \xi_{st}}{1 - \xi_{st}}\right] Y_{F\infty}}$$

► Modified-bandwidth filtered linear velocity forcing scheme is used that can maintain the turbulence length scale as well as the rms. ⁶

 $^{^{6}}$ Klein, M., Chakraborty, N., and Ketterl, S. (2017). Flow, Turbulence and Combustion 99, p. 955–971.

Forced Scalar Reacting Simulations


$$\langle \phi \rangle = 1.0$$

$$\phi' = 0.29$$

$$u'/S_L = 5$$

$$t/T_{chem} = 2$$

Forced Scalar Reacting Simulations

Future Direction

- ► Further demonstrate that the scalar forcing scheme does not artificially modify the physics of the turbulent stratified flame.
- ▶ Use the newly developed research tool to investigate the the effects of highly stratified unburned mixtures on turbulent flames.
- ► The scalar forcing scheme will be used with more detailed chemical mechanisms.

Acknowledgements

We are grateful to ARCHER, Cirrus, (kAU: 10,000, code: SENGA+) and Rocket HPC services for computational support, and to EPSRC for financial support.