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* Profile

« Research activities (past/current)

« High fidelity simulations of reacting flows: Statistics of Local and
Global Flame Speed for Highly Turbulent H2/Air Premixed
Flames

« Asymptotic analysis of turbulent reacting flows with
Computational Singular Perturbation: Topological and chemical
characteristics of turbulent flames at MILD conditions

 Future research
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Educational background Research Interests

*

2016: PhD in Mechanics (NTUA) <

Fields of CFD of reacting flows and applied mathematics
2012: MSc in Applied Mechanics (NTUA)
2005: BSc(H) in Aeronautics (Hellenic Air Force Academy)

High fidelity simulations of reacting flows (hydrogen, ammonia, solar
fuels, biofuels)

% Asymptotic analysis of multiscale systems (chemical kinetics, reacting
flows, biology, pharmacokinetics, epidemiology, population dynamics etc)

>

+ Model reduction of multiscale systems

Work Experience Track record

2020 — now: Lecturer in Mathematics at ENU/SEBE o Funding: ,
o RSE, COP26 Climate Change Grant, £10k, 2021 (PI)
2019 - 2020: Lecturer in Engineering & Aviation at UHI

o Edinburgh Napier University, Seed Corn, 2021, £8k (PI)
Programme Leader for the Aircraft Engineering o Scottish Funding Council, GCRF, 2021, £20k (co-l)
@)

2016 - 2019: Postdoc at KAUST/Clean Combust. Res. Center RSE, Research Sabbatical Grant, £65k, 2020 (PI)

2005 - 2016: Hellenic Air Force o Dissemination: Published 23 papers in peer-reviewed journals, 2
textbook chapters, 4 conference papers.

o Scholar activities: Reviewer for Combustion and Flame, Fuel,
Combustion Theory and Modelling, Journal of Energy Engineering,
Experimental Thermal and Fluid Science; Grant reviewer for EPSRC
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‘— Statistics of Local and Global Flame Speed and Structure for Highly Turbulent H2/Air Premixed Flames

/ ‘_ Work in progress with KAUST (professor Hong Im)
4 ~ o Modern combustion devices operate at extreme conditions in pursuit of higher efficiencies.

‘ o Premixed combustion at high Ka has attracted substantial research interest

o However, most previous studies examined:

/ ‘ Y % the detailed flame structure in comparison with the reference laminar flames; very few studies on the statistical
/‘ analysis of the differences in turbulent burning velocity distributions at low and high Ka conditions.

o . % the effect of the turbulent intensity (u’) on the turbulent flame speed (bending effect); very few studies on the effect of
/ the integral length scale (I1).
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Statistics of Local and Global Flame Speed and Structure for Highly Turbulent H2/Air Premixed Flames

Work in progress with KAUST (professor Hong Im)
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Statistics of Local and Global Flame Speed and Structure for Highly Turbulent H2/Air Premixed Flames

Work in progress with KAUST (professor Hong Im)
Fuel consumption speed (global quantity): S; = ;fvd)FdV, Poinsot et al. (1992) CST
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Statistics of Local and Global Flame Speed and Structure for Highly Turbulent H2/Air Premixed Flames

Work in progress with KAUST (professor Hong Im)

Displacement speed (density weighted) (local quantity): S; = Pia — 1 [d)k —V - Jx], Im and Chen (1999) CNF
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* Probability density function (PDF) of 53
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For all Ka conditions, the peak of PDF coincides with S; of the laminar flame — Laminar flamelet assumption holds at Ka > 1,000
Sq is dictated by local flame stretch.
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Asymptotic analysis of turbulent reacting flows with Computational Sinqular Perturbation

It is a mathematical quantity with no physical meaning that results from the projection of the chemical source
term on the CSP basis vectors.

D Because the important modes can be identified. Their importance relies on rigorous mathematics. T

I D It depends on what you are interested: ignition, flame propagation, emissions are some examples T

D Now, the physical meaning can be obtained by identifying the processes that compose these modes. T -

D It is a measure of the local rate of stretching of the system’s dynamics constructed on the basis of the CSP modes. 7
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Asymptotic analysis of turbulent reacting flows

Topological and chemical characteristics of turbulent flames at MILD conditions
Manias et al. CnF 208 (2019) 86-98

» Processes evolve outside the range of interest of standard combustion processes Computational Singular

> Difficult to identify the dominant physical processes that characterize the combustion. Perturbation (CSP)

v DNS data with detailed CH4 chemistry (Minamoto et al., CNF (2014))
v’ 2-phase process to achieve MILD combustion:
» a) preprocessing of inhomogeneous field (Y;, T, u)
> b) feeding the computational domain as inflowing fields (turbulent MILD combustion)

v Homogeneous isotropic turbulence (freely decaying turbulence field)

10
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Conventional flame markers based on intermediate species isocontours do not work effectively in MILD combustion.
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Asymptotic analysis of turbulent reacting flows

Topological and chemical characteristics of turbulent flames at MILD conditions

Manias et al. CnF 208 (2019) 86-98
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» A.sexists in a considerably broader region than Qg.

» Qg is negative in most part of the domain

> Qg.r highlights the regions of explosive dynamics

» The system’s explosive dynamics is inherently due to transport.

What makes Q.1 positive and the dynamics there explosive?
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Asymptotic analysis of turbulent reacting flows

Topological and chemical characteristics of turbulent flames at MILD conditions

Chemistry - . Convection - X, Diffusion - X4 Manias et al. CnF 208 (2019) 86-98
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P3 P, Ps
Wig,p = -166.2 | Wi, = -46.1 | wi,, . = -3665.73 | Wz, = 5784 | wi,, . = 493.9
cr=0.2 cr=0.3 cr=0.4 cr=0.3 cr=0.5 Competition between
Mode 1 55% | Mode 10 42% | Mode1  79% | Mode 10 63% | Mode 10 69% explosive and dissipative
Mode 10 39% | Mode 1 41% | Mode 10  18% | Mode1l 19% | Mode 1 27% modes
Mode 6 13%
Mode 1 (Dissipative) ¢ Fastest time scale Mode 10 (Explosive) + Largest amplitude
+ Associated with HCO * Associated with H-chemistry

+ Enhanced by convective processes
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o Hydrogen combustion in compression ignition engines.
o Ammonia use in gas turbines

o CSP analysis of local sensitivity data

o Asymptotic analysis of highly turbulent systems
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