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What Is particle precipitation?
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The product quality usually correlates with
the particle size distribution (PSD)

L.Metzger, et.al (2016)
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Challenges Motivation

* Precipitation rate is highly sensitive to the * Numerical simulations open a door to
local composition understand the physics in turbulent

precipitation

* Fast reaction-precipitation
* Develop a coupled DNS-DPB approach
for simulating particulate process in

« Different mechanisms are acting turbulent flow

simultaneously

- PSD is changing rapidly in space and in *Understand the role of mixing

time

* Local information can hardly be captured
by experiments
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Coupling between DNS and Population balance modelling
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Population balance modelling  population balance equation (PBE)
* Particle number Number transport
— Discretised into intervals 1
— Number density P ’ | 96
n e U ° n .
dN (L J _ 2 J
w1y = O " u-Vny = — V2 + By — ——
L VdlL ot t Sc t oL
Convection Diffusion
Evolution of Number density distribution in time term term
n,(L)4
» Assume patrticles as tracer
n; (L, t)dL: number of
N(q) particles in (L,L + dL) att * PBE is solved locally in each cell together with the
DNS
* The PBE source terms are used also in the
n; (L, t + dt)dL:number of computation of ion consumption to achieve coupling :
. . ith ion transport N Total number_of particles
particles in (L, L + dL) at t+dt with | P n, Number density
» The flow field is captured by DNS, which can be :; ﬁlﬁgelgtt?éxatleﬁass)
considered as fully resolved BO Generation term
> D Destruction term
L L+dL *  The only modelling terms are the growth and G Growth rate
S. Rigopoulos (2010) nucleation rates
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Discretisation on the particle size distribution (PSD)

on(j) _ U _ aG; - n(j)
T +u-Vn() = § Vzn(]) + 305(Vj — Voue) — PTG

Uniform grid
Crrrrrrrrrrrrrri

« Particle size range is discretised
[11] | | | | | | into 45 intervals (j = 1 - 45 ) with
IR | | | | a composite grid

Geometric grid

L || ] | | | | * The composite grid arrangement

A
Composite grid
INREE | | | | gives minimal leakage in the
interested range compared to the
Geometric  Uniform Geometric other two arrangements.
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Nanoparticle precipitation in a T-mixer

*  Apply the coupled DNS-PBE approach to the nano-particle BaCl, + H,SO, — BaSO, + 2HCI
precipitation of BaSO, in a T-mixer (H.-C. Schwarzer, 2004) |

* What are the effects of mixing on the precipitation process ?

. 6 species:
*  How the PSD is influenced by local effects ? . Ba2+
Inlet - CI
i L LLALLIPEY e Ht
BaCl2 wep €= 12504 3D Cartesian mesh . HSO.-
+— —+0.001 24}
' impingement | I 1o v 21 million cells * S0,
‘0 .& ° + 10.003 . BaSO4
‘N - oot Flow field is fully .
/ N Mixing T [l T°% resolved to Kolmogorov 45 number densities
£ Channel ~0.006 scale
feed tube mixing zone i s 9 TOta| 51 Sca|arS
(d =0.5 mm) (d =1 mm) -10.008
Outlet | [—
H.-C. Schwarzer, et. Al (2004)
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Flow field & Mixing

Re = 1135

Turbulent in T-mixers begins at Re>400
(Telib et al., 2004)

* Helical Pattern

* Intense mixing at
impingement zone

« Fastest mixing time scale in
the order of 10°

Streamline

Micro-mixing (Engulfment) time scale

(characterizes the timescale of the most energetic vortex)
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The PSD

o PSD t=0.11413s
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Normalised number density

Mean

plane averaged PSD
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L ocal kinetics and timescales

Supersaturation Nucleation timescale
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Intermittency

v(x) = (I(x. 1))

1. 5(x.t) > Sthrechoid and T(X, 1) < Tenrechold
I(x,t) =

0, otherwise

Non-linear kinetics and
turbulent mixing leads to highly
intermittent precipitation rates.
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Conditional timescales

(a)

JJT 1(x. t)7(x, t)dt
[T 1(x. t)tdt

(b)
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Damkohler numbers

Nucleation and growth have
their own timescales.

(a)
Two Damkodhler numbers can
be defined:
Da (engulfment/nucleation)
T flow 0.06 1. 1.e+01
Da,,.. — —_— s o
Teond.n
Dac — —fo (b)
Teond, G
Neither mixing- nor kinetic- Da (engufment/growth)

0.0 4,

controlled _' -
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Consumption rates

Supersaturation
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Correlations

C lati
Cross-correlation coefficients at 3000 points in the RsReaIralatien

impingement zone and its immediate downstream

Crosscorrelation map between Crosscorrelation map between
nucleation consumption growth consumption
+10% and supersaturation +10% and supersaturation
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Crosscorrelation Coeff.

o0 nucleation and supersaturation
« growth and supersaturation e
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Locally dominant zone and its relation with supersaturation

Strong correlation with
the supersaturation map

<o 0.0e+00 200 400 600 800 1.1e+03

e s |

Growth Competing
dominant zone -
sone Competing: 400 < S < 800

Growth dominance: S < 550
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Nucleation burst

The non-linearity in the nucleation kinetics leads to thin
and intense nucleation sites.

These nucleation bursts contribute to seed formation

All thickness measured are above Kolmogorov scale
(on average 20 times larger)

nucleation source term
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Conclusions

A coupled DNS-DPE approach employed in simulating turbulent precipitation of BaSO4 nanoparticles in
a T-mixer

The comparison of the nucleation, growth and mixing timescales shows inseparable scale between
mixing and precipitation

Although most reactants are consumed in the form of growth, nucleation controls the number of seed
particles that plays a determinant role on the PSD

Different local dominant mechanism that corresponds to the supersaturation build up can be found in the
process, of which the distribution is controlled by mixing

The current works try to include aggregation that alters the growth environment
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