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Motivation: challenges
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Novel technologies
(e.g. MILD)

cost security
efficiency

adapted from de Joannon, 2015

MILD: Moderate or Intense Low oxygen Dilution combustion
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Motivation: MILD combustion

OH* chemiluminescence image

Conventional:

Jorg Leicher et al, 2013




Motivation: advantages of MILD combustion

Features of MILD combustion: Advantages of MILD combustion:
o Distributed reaction zone High efficiency
o More uniform temperature field Low emissions (especially thermal NOx)
o ldeally no visible flame Large fuel flexibility

Low noise level

J. A. Winning and J. G. Winning, Progress in Energy Combustion and Science, 1997.

A Cavaliere and M de Joannon, MILD Combustion. Prog. Energy Combust. Sci., 2004.

Minamoto el al., Combust. Sci. Technol., 2014

UNIVERSITY OF

CAMBRIDGE



Motivation: why is such mechanism needed?

o Simple gaseous fuels (methane, hydrogen, ethylene) have common characteristics.
o Oxygenated fuels and long-chain alkanes show distinct features:

* increased pollutants emission

e appearance of visible flames

o LES and DNS are needed to study these distinct features: no. of species below 40

o Current skeletal mechanisms for n-heptane available are mainly used for engine
conditions, not for MILD conditions.
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Model: Computer Assisted Reduction Method (CARM)

o DRGEP method is used as first reduction step with target species of fuel, major products and H,
allowing a cut-off threshold value of 0.01.

o A starting skeletal mechanism with high accuracy of laminar flame speed is generated.

o The trial-and-error brute force method TSA is applied on the starting skeletal mechanism for
further reduction. Species with removal error larger than 10% will be kept or otherwise re moved.
The flame speed set is kept when using TSA.

o Low temperature range (< 950 K) is not considered in the reduction process.

o More details of the method can be found here:

J.-Y. Chen, A general procedure for constructing reduced reaction mechanisms with given independent relations,
Combustion Science and Technology 57 (1-3) (1988) 89-94.

J.-Y. Chen, Automatic generation of reduced mechanisms and their applications to combustion modeling,
Zhongguo Hangkong Taikong Xuehui Huikan/Transactions of the Aeronautical and Astronautical Society of the Republic of
China 33 (2) (2001) 59-67.
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Validation: mechanisms

o Comprehensive mechanism (Zhang et al, 2016): 1268 species, 5336 reactions.

o Skeletal mechanism in the present work: 36 species, 205 reactions. For pure n-heptane,
low temperature range excluded.

o Skeletal mechanism from Ra et al, 2008: 41 species, 130 reactions. For primary reference
fuel, engine condition.

o Skeletal mechanism from Liu et al, 2012: 41 species, 124 reactions. For primary reference
fuel, engine condition.

o Skeletal mechanism from Ranzi et al, 2014: 106 species, 1738 reactions. For pure n-
heptane with low temperature.
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Validation: ignition delay time
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Validation: ignition delay time
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Validation: laminar flame speed
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Validation: laminar flame speed
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Validation: ignition delay time and laminar flame speed

o The availability of experimental data under diluted condition is limited.

o We have compared the newly developed skeletal model with the
comprehensive mechanism under wide range of dilution levels (10% -

60%), equivalence ratio (0.6-1.6) and reactants temperature: good
agreement is achieved.

o These results are not presented here for brevity.
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Validation: CFD simulation
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Validation: CFD simulation
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Validation: CFD simulation 3% oxygen

level
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Validation: CFD simulation 6% oxygen level
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Conclusion

Chemistry reduction technique CARM is applied on the comprehensive n-heptane mechanism
from Zhang et al. for the development of a skeletal mechanism (36 species) for LES/DNS study
of MILD combustion with long-chain alkane fuel.

* Ignition delay: compared with other mechanisms with similar no. of species, the present reduced 36
species skeletal mechanism show slightly better prediction under conditions that are pertinent to MILD
combustion.

* Laminar flame speed: much improved values are obtained compared with mechanisms reduced for
engine conditions.

* CFD simulation: satisfactory results compared with comprehensive (1268 species) and skeletal (106
species) mechanisms with much more species & low temperature range.
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