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Motivation: challenges 

MILD: Moderate or Intense Low oxygen Dilution combustion
adapted from de Joannon, 2015
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Motivation: MILD combustion

Jörg Leicher et al, 2013

Conventional:

MILD:

OH* chemiluminescence image
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Motivation: advantages of MILD combustion

Advantages of MILD combustion:

o High efficiency
o Low emissions (especially thermal NOx)
o Large fuel flexibility
o Low noise level

Features of MILD combustion:

o Distributed reaction zone
o More uniform temperature field
o Ideally no visible flame

Minamoto el al., Combust. Sci. Technol., 2014

J. A. Wünning and J. G. Wünning, Progress in Energy Combustion and Science, 1997. 

A Cavaliere and M de Joannon, MILD Combustion. Prog. Energy Combust. Sci., 2004.
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Motivation: why is such mechanism needed?
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o Simple gaseous fuels (methane, hydrogen, ethylene) have common characteristics.
o Oxygenated fuels and long-chain alkanes show distinct features:

• increased pollutants emission 
• appearance of visible flames 

o LES and DNS are needed to study these distinct features: no. of species below 40
o Current skeletal mechanisms for n-heptane available are mainly used for engine 

conditions, not for MILD conditions.



Model: Computer Assisted Reduction Method (CARM)
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o DRGEP method is used as first reduction step with target species of fuel, major products and H, 
allowing a cut-off threshold value of 0.01. 

o A starting skeletal mechanism with high accuracy of laminar flame speed is generated.
o The trial-and-error brute force method TSA is applied on the starting skeletal mechanism for 

further reduction. Species with removal error larger than 10% will be kept or otherwise removed. 
The flame speed set is kept when using TSA.

o Low temperature range (< 950 K) is not considered in the reduction process.  

o More details of the method can be found here:

J.-Y. Chen, A general procedure for constructing reduced reaction mechanisms with given independent relations, 
Combustion Science and Technology 57 (1-3) (1988) 89–94.

J.-Y. Chen, Automatic   generation   of   reduced   mechanisms   and   their applications   to   combustion   modeling, 
Zhongguo Hangkong Taikong Xuehui Huikan/Transactions of the Aeronautical and Astronautical Society of the Republic of 
China 33 (2) (2001) 59–67.



Validation: mechanisms
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o Comprehensive mechanism (Zhang et al, 2016): 1268 species, 5336 reactions.

o Skeletal mechanism in the present work: 36 species, 205 reactions. For pure n-heptane, 
low temperature range excluded.

o Skeletal mechanism from Ra et al, 2008: 41 species, 130 reactions. For primary reference 
fuel, engine condition.

o Skeletal mechanism from Liu et al, 2012: 41 species, 124 reactions. For primary reference 
fuel, engine condition.

o Skeletal mechanism from Ranzi et al, 2014: 106 species, 1738 reactions. For pure n-
heptane with low temperature.



Validation: ignition delay time
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𝜙: 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑟𝑎𝑡𝑖𝑜 𝛼: 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙



Validation: ignition delay time
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𝜙: 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑟𝑎𝑡𝑖𝑜 𝛼: 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙



Validation: laminar flame speed
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𝑇𝑟: 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝛼: 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙

(a) 1 atm, 𝑇𝑟 = 398 K, 𝛼 = 0
(b) 2 atm, 𝑇𝑟 = 353 K, 𝛼 = 0



Validation: laminar flame speed
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𝑇𝑟: 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝛼: 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙

(a) 5 atm, 𝑇𝑟 = 353 K, 𝛼 = 0 (b) 1/5/10 atm, 𝑇𝑟 = 298 K, 𝛼 = 0



Validation: ignition delay time and laminar flame speed
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o The availability of experimental data under diluted condition is limited.

o We have compared the newly developed skeletal model with the 
comprehensive mechanism under wide range of  dilution levels (10% -
60%), equivalence ratio (0.6-1.6) and reactants temperature: good 
agreement is achieved.

o These results are not presented here for brevity.



Validation: CFD simulation

13

Jet in Hot co-flow burner with pre-vaporized n-heptane



Validation: CFD simulation

Reaction source term:

�̇�# = 𝜅�̇�#∗( (𝑌, (𝑇 … )

Cell

Canonical 
reactor
�̇�#∗( 8𝑌, 8𝑇 … )

Surrounding fluids values

Reactive structure values

Residence time in the reactive structures

𝜅 =
𝜏/

𝜏/ + 𝜏1#2
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URANS with Partially Stirred Reactor model

o Chemistry is solved on the fly.

o All species are transported.



Validation: CFD simulation 3% oxygen level
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Validation: CFD simulation 6% oxygen level
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• Ignition delay: compared with other mechanisms with similar no. of species, the present reduced 36 
species skeletal mechanism show slightly better prediction under conditions that are pertinent to MILD 
combustion.

• Laminar flame speed: much improved values are obtained compared with mechanisms reduced for 
engine conditions.

• CFD simulation: satisfactory results compared with comprehensive (1268 species) and skeletal (106 
species) mechanisms with much more species & low temperature range.

Conclusion
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Chemistry reduction technique CARM is applied on the comprehensive n-heptane mechanism 
from Zhang et al. for the development of a skeletal mechanism (36 species) for LES/DNS study 
of MILD combustion with long-chain alkane fuel.
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