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Methane and hydrogen turbulent jet flames

Role of integral scale in methane flames Hydrogen combustion and thermo-diffusive instabilities
e Lot of effort in achieving high u’, not as much for

integral scale £. e Hydrogen important for decarbonization of energy

and heat production, energy storage and vector
e Challenging for many reasons
e High laminar flame speed
Laminar Turbulent e Flashback and self-ignition
flows flows e Combustion (thermo-diffusive) instabilities

e Different Re number between DNS/experiments and
real devices mostly due to “SIZE" ¢

High Reynolds asymptotics

Real devices
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Systematic analysis of integral scale effects on turbulent
flame speed and turbulence dynamics in flames J
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Turbulent methane-air jet flames at increasing Re and constant Ka

e Configuration (Luca et a/ PCl 2019, Attili et al PCl 2021)
- Methane-air with ¢ = 0.7
- Spatially evolving planar jet, fully developed channel inflow
- P=4atm
- Pilot with fully burnt product
e Methods and models (Attili et a/l CNF 2014)
- Low Mach, reactive, Navier-Stokes
- Skeletal mechanism with 16 species (Luca et al JPP 2017) FameR3
e Computational Cost (for the largest flame) '

- 22 Billion grid points, 0.5 Trillion degrees of freedom
- 80 Millions CPU hours

- CRAY XC40 supercomputer in KAUST using up to 200K cores

R1 R2 R3 R4
Jet Re 2800 5600 11200 22400
Jet Upui 100 m/s 100 m/s 100 m/s 100 m/s
Slot width H 0.6 mm 1.2 mm 2.4 mm 4.8 mm
Grid points 88 Million 350 Million 2.8 Billion 22 Billion o™
Karlovitz number ~40 ~40 ~40 ~40

Goal: assess the effect of the integral scale
(large integral scale usually not achieved in DNS)

Re=2800  Re=5600 Re = 11200
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Turbulent hydrogen-air jet flames with thermo-diffusive instabilities

e Configuration (Berger, Attili, Pitsch CNF, in preparation)
- Hydrogen-air with ¢ = 0.4
- Spatially evolving planar jet, fully developed channel inflow

- P=1atm A
- Pilot with fully burnt product s A"

e Methods and models ; v
- Low Mach, reactive, Navier-Stokes ' o \

- 9 species hydrogen mechanism
e Computational Cost

- 1 Billion grid points
- 20 Millions CPU hours
- SuperMUC-NG supercomputer Leibniz-Rechenzentrum in Munich
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e
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H2 flame
Jet Re 11000 f . 3
Jet Upuk 24 m/s
Slot width H 8 mm
Grid points 1 Billion
Karlovitz number ~16
Goal: investigate coupling between
turbulence and thermo-diffusive instabilities J I I
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Turbulent flame speed definition
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Turbulent flame speed, area ratio and Iy — methane flames
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The turbulent flame speed increases downstream and with Re
Io is larger than 1 and increases downstream and with Re i.e., increases with integral scale
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Turbulent flame speed

Jy pYcn, dv i St Ac 1 Q* o JypYon, dv
A A h=—"%= =" =y T4
puYCH,,inAc SL At SL AT puYCH, ,in
Two possible reasons for non-unity /o:

e variations of Yy, with respect to 1D planar laminar flame

e variations reaction layer thickness with respect to 1D planar laminar flame

St(x)=—

3D turbulent methane flame 5 5
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If any, variations of YCH,, have a minor effect in decreasing Iy
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Volume of reactive fluid
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Normalized volume between the flame ¢ = ¢p = 0.73 and
the isosurface c.
For ¢k < cp:

1
Vi) = E /v Hleo = (e EH(cla£) = c)dy Low Reynolds

Turb. flame Reaction rate

(analogously for ¢, > o)

The thickness of the reaction layer is larger compared to the laminar flame and increases with the Reynolds number J
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Effect of integral scale
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\E 4 L e The turbulent flame speed and flame area
<t e For £/8, < 6: exponential increase
3 e For £/6, > 6: power law
2
St A
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10.2
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Evolution of turbulence scales across the flame brush
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» Kolmogorov scale 1 and g ———— 10 o
integral scale £ change 0 g 002505 07 1
/Ly s
> Re decreases 2800 5600 11200 22400 2800 5600 11200 2400
> Ratio £/n decreases: e = Ul e = Uit
. X 4x1078 - - 107 = — 1%
7 increases, £ decreases T v 8 T=TE _® Tho i 2 T=TWK ©
. H oo .
Question:
» Do 7 and ¢ evolve _axi0
differently for £
. . =
increasing Re?

1x107°

10
2800 5600 11200 22400 2800 5600 11200 22400
Re = UparH/v Re = UpurH/v

For increasing Re, heat release is less effective on small scales and more effective on large scaIESJ

THE UNIVERSITY

10/14 Antonio Attili — School of Engineering, University of Edinburgh — antonio.attili@ed.ac.uk of EDINBURGH



mailto:antonio.attili@ed.ac.uk

Turbulent flame speed in the H2 flame
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Methane flame, Re=11200

Hydrogen flame, Re=11000
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The turbulent flame speed is remarkably high in the Hy flame

J

Turbulent flame area plays a relatively small role

J

Io is extremely high in the Hy flame (note Ka = 16 in the Hy flame) '
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Flame visualization and reaction rates

Normalized fuel

Normalized fuel

Turbulent methane flame at Re = 11200
Normalized temperature

Turbulent hydrogen flame at Re = 11000
Normalized temperature
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Reaction rates in the hydrogen flame

3D turbulent methane flame 3D turbulent hydrogen flame 2D laminar hydrogen unstable flame
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Similar structures in 3D turbulent and 2D laminar hydrogen flames.
Reaction rate enhancement in turbulent Hy flame is larger than in Hy laminar flame.
Synergistic effect of turbulence and thermo-diffusive instabilities.
13/14 Antonio Attili — School of Engineering, University of Edinburgh — antonio.attili@ed.ac.uk THE UNIVERSITY

of EDINBURGH


mailto:antonio.attili@ed.ac.uk

Conclusions

Methane flames:

» Flame surface and turbulent flame speed show power law scaling with integral scale at
large Re after exponential growth

» Lack of proportionality between flame area and turbulent flame speed is due to reaction
layer thickening

> [y increases for increasing Re at constant Ka (increasing integral scale)

» Effect of heat release on turbulence across the brush has more and more effect on large
scale for increasing Re

Hydrogen flame:

» Very high Iy due to thermo-diffusive instabilities strongly enhances turbulent flame speed

» Synergistic effect of turbulence and thermo-diffusive instabilities

Data are available, contact: antonio.attili@ed.ac.uk
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