Turbulence-flame interaction in high Reynolds number methane and hydrogen turbulent jet flames

Antonio Attili

School of Engineering, University of Edinburgh United Kingdom

Methane and hydrogen turbulent jet flames

Role of integral scale in methane flames

- Lot of effort in achieving high u', not as much for integral scale ℓ .
- Different Re number between DNS/experiments and real devices mostly due to "SIZE" ℓ

Systematic analysis of integral scale effects on turbulent flame speed and turbulence dynamics in flames

Hydrogen combustion and thermo-diffusive instabilities

- Hydrogen important for decarbonization of energy and heat production, energy storage and vector
- Challenging for many reasons
 - High laminar flame speed
 - Flashback and self-ignition
 - Combustion (thermo-diffusive) instabilities

Laminar unstable H₂ flame (Berger, Kleinheinz, Attili, Pitsch PCI 2019)

Investigation of thermo-diffusive instability and turbulence interaction

Turbulent methane-air jet flames at increasingenReemed teonstant Ka

Turbulent hydrogen-air jet flames with thermo-diffusive instabilities

- Configuration (Berger, Attili, Pitsch CNF, in preparation)
 - Hydrogen-air with $\phi=$ 0.4
 - Spatially evolving planar jet, fully developed channel inflow
 - P = 1 atm
 - Pilot with fully burnt product

Methods and models

- Low Mach, reactive, Navier-Stokes
- 9 species hydrogen mechanism

• Computational Cost

- 1 Billion grid points
- 20 Millions CPU hours
- SuperMUC-NG supercomputer Leibniz-Rechenzentrum in Munich

	H2 flame
Jet Re	11000
Jet U _{bulk}	24 m/s
Slot width H	8 mm
Grid points	1 Billion
Karlovitz number	$\approx \! 16$

Goal: investigate coupling between turbulence and thermo-diffusive instabilities

$$I_0 = \frac{S_T}{S_L} \frac{A_C}{A_T} = \frac{\Omega^*}{S_L} \frac{1}{A_T}$$

where

$$\Omega^{*} = -rac{\int_{\mathcal{V}}
ho \dot{Y}_{\mathrm{CH}_{4}} dv}{
ho_{u} Y_{\mathrm{CH}_{4}, in}}$$

The turbulent flame speed increases downstream and with Re

 I_0 is larger than 1 and increases downstream and with Re i.e., increases with integral scale

$$S_{T}(x) = -\frac{\int_{\mathcal{V}} \rho \dot{Y}_{\mathrm{CH}_{4}} dv}{\rho_{u} Y_{\mathrm{CH}_{4}, in} A_{C}} \qquad \qquad l_{0} = \frac{S_{T}}{S_{L}} \frac{A_{C}}{A_{T}} = \frac{1}{S_{L}} \frac{\Omega^{*}}{A_{T}} \qquad \qquad \Omega^{*} = -\frac{\int_{\mathcal{V}} \rho \dot{Y}_{\mathrm{CH}_{4}} dv}{\rho_{u} Y_{\mathrm{CH}_{4}, in}}$$

Two possible reasons for non-unity I_0 :

- variations of \dot{Y}_{CH_4} with respect to 1D planar laminar flame
- variations reaction layer thickness with respect to 1D planar laminar flame

If any, variations of \dot{Y}_{CH_4} have a minor effect in decreasing I_0

pr The thickness of the reaction layer is larger compared to the laminar flame and increases with the Reynolds number light

of the amethane reaction sate conditioned on ersty of Editory - antonio.attili@ed.ac.uk where the peak reaction is located. Again, the pdf is

Effect of integral scale

THE UNIVERSITY of EDINBURGH

Evolution of turbulence scales across the flame brush

For increasing Re, heat release is less effective on small scales and more effective on large scales

Turbulent flame speed in the H2 flame

The turbulent flame speed is remarkably high in the H_2 flame

Turbulent flame area plays a relatively small role

 I_0 is extremely high in the H₂ flame (note Ka = 16 in the H₂ flame)

Reaction rates in the hydrogen flame

of EDINBURGH

Conclusions

Methane flames:

- Flame surface and turbulent flame speed show power law scaling with integral large Re after exponential growth
- ► Lack of proportionality between flame area and turbulent flame speed is due to due to
- ▶ *I*₀ increases for increasing Re at constant Ka (increasing integral scale)
- Effect of heat release on turbulence across the brush has more and more effect on large scale for increasing Re

Hydrogen flame:

- ▶ Very high I_0 due to thermo-diffusive instabilities strongly enhances turbulent flame speed
- Synergistic effect of turbulence and thermo-diffusive instabilities

Data are available, contact: antonio.attili@ed.ac.uk

