



# Pulsating flame spread over a n-propanol pool at sub-flash temperatures

Baopeng Xu and Jennifer X Wen Warwick FIRE, School of Engineering University of Warwick



# Introduction







# Numerical framework based on OpenFOAM

- Gas phase (flame spread)
  - Compressible solver with buoyancy effect used for directly solving flame dynamics;
- Liquid phase
  - Incompressible solver with buoyancy effect and viable properties developed in [1]
- A finite-rate one-step chemical reaction for combustion.

1. Xu, Baopeng and Wen, Jennifer X. (2020) The effect of convective motion within liquid fuel on the mass burning rates of pool fires – a numerical study. Proc. Combust Inst. Vol. 38. (In press)



???

### The 'film theory' based evaporation model [2]

Used in [1] and by many others, neglecting effect of liquid motion on evaporation.

The evaporation rate:

$$\dot{m}'' = h_m \frac{p}{R_f T_g} \ln\left(\frac{X_{f,g} - 1}{X_{f,l} - 1}\right)$$

The fuel vapor equilibrium pressure at the surface temperature  $T_s$ 

$$X_{f,l} = exp\left[\frac{\Delta H_{v}}{R_{f}}\left(\frac{1}{T_{s}} - \frac{1}{T_{b}}\right)\right]$$

The mass transfer coefficient:

 $h_m = \frac{Sh \cdot \mu_f}{L \cdot Sc \cdot \rho}$ 

2. T. Sikanen, S. Hostikka, Fire Saf. J. 80 (2016) 95-109.





Predicted pool surface flow and pulsating pool fires [1]



1. Xu, Baopeng and Wen, Jennifer X. (2020) The effect of convective motion within liquid fuel on the mass burning rates of pool fires – a numerical study. Proc. Combust Inst. Vol. 38. (In press)

# Interface

#### Mass exchange (newly implemented in in-house OpenFOAM)

- A diffusion evaporation model based on equilibrium assumption used for at the interface
- Momentum exchange
  - A thermocapillary model
- Energy exchange
  - A conjugate heat transfer model with in-depth radiation and evaporation sink



# **Computational conditions**

#### Fuel region (n-propanol)

 Pressure
 0.1 MPa

 Temperature
 287, 290, 293 K

 Width
 20 mm

 Fuel depth
 2, 5, 10 mm

3. FJ Miller, HD Ross, Further observations of flame spread over laboratory-scale alcohol pools,, Symp. (Int) on Combus 24 (1), 1992.

#### Gas region (Ambient air)

| Pressure    | 0.1 MPa |
|-------------|---------|
| Temperature | 293K    |
| Width       | 40 mm   |

#### Mesh

Walls

**3 million** (20 microns at the interface) **Ignition** 

adiabatic

Pilot flame





# Predicted and measured flame edge location vs time for different fuel depths and initial temperatures



### Pulsating spread (287 K)



# Pulsating spread (290 K)





### Pulsating spread (290 K)

THE

OF

Time: 0.50 s



# Uniform (steady) spread (293 K)



### Pulsating spread (287 K)





# Conclusions

- Quantitative agreement between the predicted and measured flame edge propagation speeds;
- Both the pulsating and uniform spread phenomena at different sub-flash temperatures are well captured;
- The predictions revealed find flow features like the gas phase re-circulation cell, thermocapillary/Marangoni effects at the interface.

