

Electrostatic fields for the control of evaporating fuel droplets in a charged electrospray

Daniel Fredrich¹, Erik Weiand and Andrea Giusti

Objectives

I. Modulate the trajectories of charged droplets in a bulk flow using external electrostatic fields.

Objectives

- I. Modulate the trajectories of charged droplets in a bulk flow using external electrostatic fields.
- II. Increase the effective time available for droplet evaporation over a finitelength mixing region.

Imperial College London

Objectives

- I. Modulate the trajectories of charged droplets in a bulk flow using external electrostatic fields.
- II. Increase the effective time available for droplet evaporation over a finitelength mixing region.
- III. Control the location of fuel vapour release a concept introduced here as *'targeted evaporation'.*

UKCTRF meeting

02/12/2021

Hypothetical configuration

1

Hypothetical configuration

- 'Electrospray in cross-flow'
- Air at atmospheric pressure
- Charged kerosene droplets w/ initial temperature of 300 K
- 3×10⁶ mesh points

Case	$T_{g,0}$ [K]	U_b [m/s]	$d_{0,i}~[\mu { m m}]$	$u_{d,y,0}$ [m/s]	$ heta_d$ [°]	$E_{ m ext}/{E_{ m ref}}^1$	Orientation
A B	300 700	2, 20, 80 10	{5:95} 50	30 10	$\pm 9 \\ 0$	0, 0.1, 1 0, 2	$\pm E_{\mathrm{ext},y} \ E_{\mathrm{ext},x}$

UKCTRF meeting

02/12/2021

 ${}^{1}E_{\text{ref}} = 1 \times 10^{6} \text{ V/m} < \text{Electrical breakdown of air} (~ 3 \times 10^{6} \text{ V/m})$

Imperial College London

Numerical method

- Large eddy simulation (LES) with Eulerian-Lagrangian formulation
- Based on open-source CFD software package OpenFOAM
- Rapid mixing model¹ for droplet evaporation (secondary breakup neglected)
- Electrostatic forces computed in the Eulerian framework²
- Net charge of each droplet considered constant throughout lifetime³

¹Miller et al., International Journal of Multiphase Flow 24 (1998), 1025-1055. ²Weiand and Giusti, International Journal of Spray and Combustion Dynamics (2021), In review. ³Doyle et al., Journal of Colloid Science 19 (1964), 136-143.

Imperial College London

Case A – Droplet trajectories

- Symbols: droplet bin-averages
- *Lines:* 2D analytical model based on drag and electrostatic forces

Case A – Droplet trajectories

- Symbols: droplet bin-averages
- Lines: 2D analytical model based on drag and electrostatic forces
- Setup: el. field in the negative vertical direction (top figure only)
- Conclusion: mean droplet trajectories affected by el. forces

02/12/2021

UKCTRF meeting

Imperial College London

Case B – Residence time

- Setup: el. field in the positive horiz. direction (no evaporation)
- Top 2D model: promising balance for 50 μm droplet

02/12/2021

UKCTRF meeting

Imperial College London

Case B – Residence time

- Setup: el. field in the positive horiz. direction (no evaporation)
- Top 2D model: promising balance for 50 μm droplet
- Bottom CFD: quasi-infinite
 droplet residence time achieved

UKCTRF meeting 02/12/2021

Case B – 'Targeted evaporation'

• Setup: el. field in the positive horiz. direction

Case B – 'Targeted evaporation'

• Setup: el. field in the positive horiz. direction

'Targeted evaporation' (2)

- Localised fuel vapour release
- Repulsion forces promote droplet separation and dispersion

UKCTRF meeting

02/12/2021

8

Imperial College London

'Targeted evaporation' (2)

- Localised fuel vapour release
- Repulsion forces promote droplet separation and dispersion
- Quicker evaporation (-30%) due to higher droplet *Re* number (increased relative velocity)

UKCTRF meeting

02/12/2021

UKCTRF meeting

02/12/2021

'Targeted evaporation' (3)

'Targeted evaporation' (3)

- Enhanced mixing due to higher turbulence intensity in the continuous phase
- Smaller fuel vapour gradients downstream (more homogeneous mixture)

Conclusions

I. Successfully simulated the modulation of droplet trajectories under the influence of externally imposed electrostatic fields.

Imperial College London

Conclusions

- I. Successfully simulated the modulation of droplet trajectories under the influence of externally imposed electrostatic fields.
- II. Increased the effective time available for droplet evaporation over a finitelength mixing region.

Imperial College London

Conclusions

- I. Successfully simulated the modulation of droplet trajectories under the influence of externally imposed electrostatic fields.
- II. Increased the effective time available for droplet evaporation over a finitelength mixing region.
- III. Demonstrated *'targeted* evaporation' by controlling the location of fuel vapour release.

Imperial College London

Future work

- Conceptualise and investigate practical configuration
- Include break-up model based on Coulomb explosion
- Consider benefits of nanoparticle addition (e.g. shell formation)
- Simulate influence on subsequent combustion process

Acknowledgements

- This project is funded by the European Commission through the Clean Sky 2 Joint Undertaking under the European Union's Horizon 2020 Research and Innovation Program, project LEAFINNOX (Grant Agreement \#831804).
- The work is also supported by the UK Consortium on Turbulent Reacting Flow (UKCTRF) and uses the ARCHER UK National Supercomputing Service (<u>http://www.archer.ac.uk</u>).

02/12/2021

Appendix A: Parameter variation

Appendix B: Droplet statistics

Appendix C: Mathematical formulation

$$\nabla^2 \varphi = -\frac{\rho_q}{\varepsilon_0},\tag{1}$$

$$\boldsymbol{E} = -\nabla \varphi. \tag{2}$$

$$\boldsymbol{F}_{E,i} = q_{d,i} \boldsymbol{E}. \tag{3}$$

$$q_{d,i} = \rho_{q,d,i} V_{d,i}, \qquad (4)$$

Appendix D: Analytical model

$$\frac{\mathrm{d}\boldsymbol{u}_d}{\mathrm{d}t} = \frac{1}{m_d} (\boldsymbol{F}_D + \boldsymbol{F}_E), \qquad (5)$$

$$F_D = 0.125 \, \rho_g \, u_{\rm rel}^2 \, C_D \, \pi \, d^2,$$
 (6)

$$\operatorname{Re}_{d} = \frac{\rho_{g} \left| \boldsymbol{u}_{\mathrm{rel}} \right| d^{2}}{\mu_{g}}, \qquad (8)$$

$$oldsymbol{u}_{
m rel} = egin{bmatrix} U_x \ 0 \end{bmatrix} - egin{bmatrix} u_{d,x} \ u_{d,y} \end{bmatrix}$$
 (9)

$$C_D = \begin{cases} 0.424, & \text{if } \operatorname{Re}_d > 1000, \\ \frac{24}{\operatorname{Re}_d} \left(1 + \frac{\operatorname{Re}_d^{2/3}}{6} \right), & \text{otherwise,} \end{cases}$$
(7)

$$U_x(y) = \frac{U_b}{0.8} \left(1 - 2 \, \frac{|y|}{h} \right)^{1/4}, \qquad (10)$$

$$F_E = q_d \, \frac{\Delta \varphi_{\text{ext}}}{|L|} \, \hat{e}_L,$$
 (11)