

The effect of heat release on the recirculation zone structure in bluff body stabilised turbulent premixed swirling flames

D. P. Kallifronas¹, P. Ahmed², J. C. Massey¹, M. Talibi², A. Ducci², R. Balachandran², N. Swaminathan¹

¹Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, United Kingdom

²Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom

Stabilising a flame

Bluff Bodies:

- A central recirculation zone (CRZ) with a pair of counter rotating vortices
- Created from the transfer of momentum from the flow to the bluff body.
- Creates favourable conditions for the flame to stabilise

Swirl:

- Axial momentum is unable to overcome the adverse pressure gradient by the expanding flow
- A vortex breakdown bubble (VBB) is created in which hot products are recirculated.
- Similar to a bluff body wake, this helps in stabilising flames.

Flow in reacting swirling flow behind a bluff body

- 1. Schneider et al. (2005), Flow Turbul. Combust., 74(1)
- 2. Dupuy et al. (2020), Combust. Flame. , 217
- 3. Chterev et al. (2014), Combut. Sci. Technol., 186(8)

Geometry Description

Case	Swirler Angle (°)	D ₀ (mm)	Blockage Ratio	S	LES/Exp.
S45-BB30	45	30	0.73	0.30	Yes/Yes
S45-BB25-1	45	25	0.51	0.44	Yes/Yes
S45-BB25-2	45	25	0.51	0.58	Yes/No
S30-BB25	30	25	0.51	0.32	Yes/No
S60-BB25	60	25	0.51	0.80	Yes/No
S60-BB30	60	30	0.73	0.42	Yes/No

Effect of blockage and swirl

- Dynamic Smagorinsky Model for subgrid turbulence
- Cambridge FlaRe model for combustion
- 2.5-2.9 million tetrahedral cells
- Extended domain as the VBB extends outside the confined region of the combustor and the outlet conditions are unambiguous
- Second order numerical schemes for spatial derivatives and first order time scheme
- Statistics are obtained for at least 10 flow through times
- Computation cost is roughly 80 CUs for each non reacting simulation and 150 CUs for reacting.

Non-Reacting Flow

Non-Reacting Flow

12

10

ms

 \widetilde{u}_x

0

-2

-4

20

Instantaneous CRZ structure

- In separated cases the shape of the VBB in instantaneous contours is very different to the in the mean ones.
- Vortices move around a large area and don't have a fixed location.
- The structure of the CRZ appears to be more similar to that in the mean fields.
- Once the VBB and CRZ merge, the merged CRZ structure also changes significantly over time.

Reacting Flow

Reacting Flow

Reacting Flow

Conclusions

Non-reacting

- Increasing the swirl number moves the VBB close to the CRZ until they merge altering their structure. A critical number S_c exists when the merging occurs
- Increasing the blockage ratio moves the VBB closer to the CRZ without changing their structures. S_c is a function of the blockage ratio.
- The instantaneous features of the VBB are significantly different than its mean features.
- The instantaneous features of the CRZ in separated cases do not change significantly over time.
- When the VBB and CRZ have merged the entire structure becomes unsteady.

Reacting

- Heat Release is altering the flow characteristics.
- If the swirl number is close to S_c, the flow structure can change.
- If it is lower than S_c, the VBB is moved downstream.
- This happens due to swirl number changes in the axial direction and dilatation
- Changes in swirl number and blockage ratio affect the position of the VBB in the same way as in non-reacting flow.
- In separated cases, the inner vortices in the CRZ do now have enough momentum to penetrate the outer vortices.

Questions?

Thank you

