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Analysis of turbulent coagulation in a jet with
discretised population balance and DNS

«  Turbulence-coagulation interaction is studied via Evolution of M1
Direct Numerical Simulations (DNS) in a planar jet. co-flow

* Reynolds decomposing the PBE leads Jet + parE;
to unknown correlations.
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PSD Correlations

« n(v) -n(w)" were mostly positive
 n(v) -n(w)" <0 close to the jet break-up point
«  Were found for distant combinations of particle
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Application and background

- Flames are used to produce ¢ &
SiO2 nanoparticles

* size between 1 - 100 nm

« Wide range of applications

« Manufacturing of materials with
enhanced properties
— Nanocomposites
— Photonics / Biomaterials

— Toothpaste /Flowaid /Cosmetics Picture borrowed from Dr. Frank
Ernst’s lecture notes
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How are they made?

* The flame is the reactor!

« This route has received increased attention over the last few decades.

« Highly reactive environment. Rapid synthesis. O(100) msec

* Processes can easily be scaled-up (diffusion flames).

« Does not require the multiple steps and cleaning of liquid by-products like wet chemistry.
« Particle collection is easier from gas than liquid streams.

Objective => to increase the production rate of nanoparticles
=> control their properties
-
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Raman V, Fox RO. Modeling of fine-particle formation in turbulent flames. Annual Review of Fluid Mechanics. 2016 Jan 3;48:159-90.
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Flame synthesis of nanoparticles

Chemical
Reaction

» (Gas phase chemical reactions
« Vapor product (precursor)
* Precursor decomposition to monomer species

HMDSO +0OH — 2S5i0 +6CH; + H
Si0o + HZO - SlOz (9) + H2
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* Nucleation = Formation of initial clusters . oo L
* Two scenarios: e 6 %9 o procursor
1. Classical Nucleation Theory (CNT) A e
condensation <> evaporation in equilibrium ° °. ¢ ° °
. . oo [+] e o
2. Instantaneous Nucleation Assumption 0o © ° I l I
monomers are thermodynamically stable s o o M S
and serve as critical clusters (nuclei) ° ° Schematic borrowed from

(Raman & Fox, 2016)




Imperial College
London

Flame synthesis of nanoparticles

Chemical
Reaction
« Condensation of monomers on particles! o °O
» Particles grow in size. 0 9% o
« Number concentration is not affected oo ° 0
» Unlike soot, surface reaction is usually © oo _°°
ignored in studies of synthesis of metal o %0 ° ®
oxides 0o °
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Flame synthesis of nanoparticles

Chemical
Reaction Sintering

« Aggregation = collision of particles
* Number concentration is reduced

= particles
partially coalesce
* sinter bonds and neck formation
« Surface area is reduced

o
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Sources of uncertainty

* Precursor decomposition chemical kinetics

* Aerosol Dynamics

« Turbulence and subgrid-scale modelling / Complex interacting phenomena
* Uncertainties in measurements (difficult to detect nucleus-size particles)

Objective of the study

« We aim to simulate flame synthesis of silica nanoparticles in turbulent flow
* Detailed comparison with experimental data

« ldentification of the main sources of uncertainties (model limitations)
EEEEEE——————————————————————————————
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Monodisperse Model X2+ 2840 2 (£28) =) -5 pn°

ot dx;  0x;\Scx;
Unknowns
% N = Number concentration
< A = Surface concentration < d(pA) N d(pu;A) _ d ia_A —pJa
<V = Particle volume fraction ot 0x; dx; \Sc 0x; PJ Anuc
Processes
% Nucleation
% Aggregation / Coagulation \. 9(pV) + a(pujV) — 0 Ll v =pJv
& ot 0x; dx; \Sc 0x; e
Variables
% ] = particle formation rate 6V _ 6V Dif
 Qpuer Vnue= Surface area and dp = A T = Nmdp?3 dy=d,mn,
volume of a nucleus
% 1, = sintering characteristic time Primary Particle Number of Collision
< a4 = surface area of a fully fused y Primary Particles diameter

(spherical) particle Diameter per aggregate
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Experimental set up

filter

=T, « (Camenzind et al., 2008)

BET

vonxs monsetiay © CH4 1 O2 diffusion flame
. HMDSO => precursor (high enthalpy content)
g O i - Silica production rate (4.8 g/h)

75 1 FTIR
TS-TEM

« Djet=1.8mm! (D1 =3.5 D2=4.8 mm)
«  Wall Thickness = 0.3 mm

« Vjet=524m/s (V1=1.6,V2=34m/s)
« Re=4500

* No other simulation for this experiment

Camenzind, Adrian, et al. "Nanostructure evolution: from aggregated to spherical SiO2 particles made in diffusion flames." (2008):
911-918
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Numerical Method

« The in-house, block-structured, boundary conforming coordinate LES code
BOFFIN-LES was employed.

« The pdf - stochastic field method was employed to describe turbulence-
chemistry interaction and was extended for the particle monodisperse model

« GRI1.2 + 2-step mechanism (34 gas species and 177 reactions)

HMDSO + OH — 2 Si0 + 6 CHs + H
Si0 + H,0 - Si0, (4 + H2

« Laminar closure for now!

Feroughi OM, Deng L, Kluge S, Dreier T, Wiggers H, Wlokas I, Schulz C. Experimental and numerical study of a HMDSO-seeded premixed
laminar low-pressure flame for SiO2 nanoparticle synthesis. Proceedings of the Combustion Institute. 2017 Jan 1;36(1):1045-53
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Simulation details

*  Cylindrical domain (40D x 60D)

«  5SMcells (dx;i, = 0.075 mm)

«  7-8 cells to capture the velocity profile

«  Grid stretching in the streamwise and radial direction

e dt=10"%sec (CFL=0.2)

*  Boundary conditions: Inlet / Symmetry / Convective
outflow

. Test cases:
< “InstNuc” = Instantaneous nucleation
< “NucCond” = CNT + condensation
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Velocity Magnitude Temperature
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Fields
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Temperature - Discrepancies close to

o the nozzle are expected
Semperature ¢ FTIR* => line-of-sight
technique over the total
flame width
 Radially average
* Include radiation model
 Remove enthalpy of
particles

* Exp
InstNuc

—— NucCond| |

HAB [em]

*FTIR = Fourier Transform Infrared Spectroscopy
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Moments

Mean MO Mean AS Mean M1
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Moments

Number Concentration Volume Fraction
* Derived from Exp Data * Exp
InstNuc | 100 InstNuc

NucCond NucCond
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Primary Particle Diameter

15 Primary particle diameter

* Exp
InstNuc

NucCond

HAB [em)]
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The model underpredicts the
primary particle diameter

Similar trend has been reported in
other studies

The NucCond kinetics give better
results. => Particles grow by
condensation!!
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Future work

* Simulate synthesis of silica nanoparticles in a laminar flame

« Test detailed reaction mechanism for the decomposition of the precursor
» Use discretized population balance models

« Use information from laminar case to simulate the turbulent case
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Conclusions

* Flame synthesis of silica nanoparticles in a diffusion flame was simulated.
* A monodisperse model was employed.
* Results were compared with detailed experimental data.

* The model overpredicted the particle volume fraction and the number
concentration of particles.

* Presumably, because of uncertainties the precursor-decomposition kinetics or
in the validity of the instantaneous-nucleation assumption
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Aerosol synthesis in turbulent flows

* In most of the cases, particle formation and growth
occur in turbulent flows

* Numerical simulations — powerful tool to:
— Describe such complex phenomena (gain physical insight)

— Design efficient systems in industrial processes (aerosol
chambers)




