

Multidimensional PDF modelling of turbulent premixed combustion

Michael Pfitzner

University of the Bundeswehr Munich Thermodynamics Institute LRT-10

Overview

Introduction – LES of turbulent premixed flames

Premixed laminar flame structure

Laminar flame pdf

Multidimensional effects

Valididation with DNS data

Conclusions and future work

Premixed turbulent combustion in industrial applications

Internal combustion engines

Stationary gas turbines

Overview

Introduction – LES of turbulent premixed flames

Premixed laminar flame structure

Laminar flame pdf

Multidimensional effects

Valididation with DNS data

Conclusions and future work

Fully premixed turbulent flames - experiment

Thinner flame / more flame wrinkling with increasing pressure

 \rightarrow Subgrid flame folding – increases with filter width / pressure

Premixed LES modelling

- LES model needed for mean reaction source term
- PDF methodology multidimensionally valid
- Fokus on wrinkled / thickened flame regime (low Ka)

Laminar premixed flame (1-D) $c(x,t) = (T - T_u)/(T_b - T_u)$ Progress variable **C**(ξ) $\rho \frac{\partial c}{\partial t} + \rho u \frac{\partial c}{\partial x} = \frac{\partial}{\partial x} \left(\frac{\lambda}{c_n} \frac{\partial c}{\partial x} \right) - \omega(c)$ 1D c transport equation $\xi = \int_0^x \rho_u s_L C_p / \lambda dx$ Transformation

Steady-state, $u = s_L$

$$\frac{\partial c}{\partial \xi} = \frac{\partial^2 c}{\partial \xi^2} + \omega(c)$$

 ξ : canonical coordinate

Flame profiles / source terms

Arrhenius source term:

$$\begin{split} \omega(c) &= \Lambda \left(1 - \alpha (1 - c) \right)^{\beta_1 - 1} (1 - c) exp\left(-\frac{\beta (1 - c)}{1 - \alpha (1 - c)} \right) \\ \alpha &= \frac{T_b - T_u}{T_b} \quad \beta \text{: activation energy} \end{split}$$

Analytic source term:

$$\omega_m(c) = (m+1)(1-c^m)c^{m+1}$$
$$c_m(\xi) = [1+exp(-m*\xi)]^{-1/m}$$
$$\xi_m(c) = \frac{1}{m} ln\left(\frac{c^m}{1-c^m}\right)$$

Overview

Introduction – LES of turbulent premixed flames

Premixed laminar flame structure

Laminar flame pdf

Multidimensional effects

Valididation with DNS data

Conclusions and future work

Universität

BML pdf:

- accurate means for quantities f(c)
 in thin flame limit
- only applicable to f(c) with
 f(c)≠0 for c=(0,1)
- ightarrow not applicable to calculate $\overline{\varpi}$

Beta pdf:

- good results for variables
 in diffusion processes
- successful in non-premixed combustion
- needs second variable for α,β
 - e.g. scalar dissipation rate
- $\overline{\omega}$ not accurate for large filters

1.0

Flamelet pdf implementations

- Negative A,B possible (constant ε)
- \rightarrow Domingo: replace by β pdf there

- No need for delta functions
 - at c=(0,1)
- accurate c⁻, c⁺ required

Comparison flamelet / beta pdf

Beta pdf:

$$p_{\beta}(c) = \frac{c^{a-1}(1-c)^{b-1}\Gamma(a+b)}{\Gamma(a)\Gamma(b)}$$

a,b determined from \bar{c} , $\bar{c'^2}$

Analytic flamelet pdf:

$$p_m(c) = \frac{1}{\Delta c(1-c^m)}, \ c^- \le c \le c^+$$

c⁻, c⁺ determined from \bar{c} , Δ

Comparison of filtered source term

Jin, Grout, Bushe, Flow Turbulence Combust (2008) 81:563-582

Overview

Introduction – LES of turbulent premixed flames

Premixed laminar flame structure

Laminar flame pdf

Multidimensional effects

Valididation with DNS data

Conclusions and future work

Relation between 1D and multi-D PDF

$$p(c) = \frac{1}{\Delta} \left(\frac{dc}{dx}\right)^{-1} H(c - c^{-}) H(c^{+} - c)$$

$$p(c)_{4}^{6}$$

Multi-D pdf:
$$p(c) = \frac{\sum (c)I(c)(dc/dx)_{1D}^{-1}}{\Omega}$$

Ω: Filter volume, cube:
$$\Omega = \Delta^3$$

I(c):
$$|\nabla c|_{3D} / |dc/dx|_{1D}$$

PDF of 2D sinusoidal flame

Assumptions:

- no change in inner flame structure
- no crossing of isolines

 $\Delta = 5^* \delta_f$, strong wrinkling

Universität

UK CTRF, 1 December 2021

Filtering 1D profiles with filter kernel

- Multidimensional slice area A(d)
- Represented by filter kernel r(x)

Filtered value of z(x) with
 filter size ∆ centered at x=x_m:

Effect of filter kernel

Limit of filtered $\overline{c}(x_m)$, $\overline{\omega}(x_m)$ at large Δ

1D filtered $\overline{\omega}$ vs. \overline{c}

Parameterical plots: $\overline{\omega}(x_m)$ vs. $\overline{c}(x_m)$

Area effect on pdf in c space

Area effect on pdf in c space

Overview

Introduction – LES of turbulent premixed flames

Premixed laminar flame structure

Laminar flame pdf

Multidimensional effects

Valididation with DNS data

Conclusions and future work

Statistically planar turbulent flame DNS

c isocontours 0.1, 0.9

 $u'/s_{L} = 15$

 $p(c) = \frac{\sum (c)I(c)(dc/dx)_{1D}^{-1}}{\Omega}$

PDF for large (RANS-like) filter widths

Gray line: 1D pdf scaled with constant factor

DNS analysis: change of inner flame structure

 $I(c) \sim 1$: same c(x) gradients in laminar and turbulent flame

Area effect in c space - large filter width

- RANS filter: $\Sigma(c)$ flat

- Σ level increased (r(0)>1)

LES model for $\overline{\omega}$ vs. $\widehat{\mathcal{C}}$

- Generate 1D $\tilde{c}(x_m)$ from 1D filtered $\overline{\rho c}$

- Plot $\overline{\omega}(x_m)$ vs. $\widetilde{c}(x_m)$

Filtering / binning of DNS data

- $\overline{\omega}$ box-filtered from DNS
- sort / average $\overline{\omega}$ in \tilde{c} bins

Raw filtered DNS ω

Filtered + binned DNS ω

DNS-fitted wrinkling factors

Wrinkling factor Ξ derived from fit to DNS ω_{max}

Wrinkling factor models

solid lines: mod. Fureby model (u'_{Δ}/s_{L}), dashed: mod. Keppler model (Ka_{Δ})

Validation of complete new model

- Same results for modified Fureby / Keppeler wrinkling factors
- Agreement similar for all u'/s $_{L}$, $\Delta /\delta _{th}$ and for $\tau \text{=}3,\,4.5$
- no model parameter fitted to particular case

Prediction of other variables

Overview

Introduction – LES of turbulent premixed flames

Premixed laminar flame structure

Laminar flame pdf

Multidimensional effects

Valididation with DNS data

Conclusions and future work

Conclusions

- Analytic $c(\xi)$, source term $\omega(c)$ and pdf for premixed combustion
- Flamelet pdf not integrable for $c \rightarrow 0,1$
- $\bar{c} \text{ or } \tilde{c}$ and Δ/δ_{th} determine pdf limits c⁻,c⁺
- no δ functions at c=(0,1)
- Flamelet pdf more accurate than β pdf at large Δ/δ_{th}
- Multidimensional effect: slicing area A(d)
- Generates filter kernel r(x)

Conclusions (II)

- Complicated multi-D effects on flamelet pdf
- ~ 1D pdf with constant Ξ for large filters
- Analytic model for $\tilde{c}(x_m)$, $\overline{\omega}(x_m)$: 1D filter with kernel r(x)
- Wrinkling factor effect: filter 1D profiles at $\Delta' = \Delta/\Xi$
- Ξ models derived from DNS data (mod. Fureby, mod. Keppeler)
- Good agreement with ALL filtered/binned DNS data

Thank YOU for YOUR attention !

Backup

Simple analytic expressions for means

Cell averaged source term:

$$\overline{\omega(c)_m} = \int_0^1 \omega_m(c) p_m(c) dc = \frac{1}{\Delta} \int_{c^-}^{c^+} \frac{\omega_m(c)}{c(1-c^m)} dc = \frac{(c^+)^{m+1} - (c^-)^{m+1}}{\Delta}$$

Cell averaged flamelet source:

$$\overline{\frac{\partial^2 c}{\partial \xi^2} + \omega(c)} = \overline{\frac{\partial c}{\partial \xi}} = \frac{1}{\Delta} \int_{c^-}^{c^+} \frac{\frac{\partial c}{\partial \xi}}{dc/d\xi} dc = \frac{1}{\Delta} \int_{c^-}^{c^+} dc = \frac{c^+ - c^-}{\Delta}$$

True for ALL flamelet pdf's

Conclusions flamelet / beta pdf

- Flamelet pdf: form independent of \bar{c} , Δ c⁻, c⁺ depend on \bar{c} , Δ
- Beta pdf: depends on \bar{c} , $\bar{c'^2}$
- Beta pdf overpredicts $\overline{\omega}$ for large Δ/δ_f
- $\overline{\omega}$ insensitive to pdf for small Δ

Analytic profile with GRI 3.0 chemistry

Analytic profile with GRI 3.0 chemistry

PDF for stratified flames

- leaner flame \rightarrow thicker reaction zone
- \rightarrow different scaling from x to ξ

Chakraborty, Klein, Cant, J. Combustion, 2011, doi:10.1155/2011/473679

Wrinkling factor models

$$u_F = 1.4 \cdot \left(\frac{u'_{\Delta}}{s_{L0}}\right)$$
$$D_F = \frac{2}{u_F + 1} + \frac{7/3}{1/u_F + 1}$$
$$\Gamma_F = 0.19 \cdot u_F \cdot \left(\frac{\Delta}{\delta_{th}}\right)^{1.15}$$
$$\Xi_F = Max \left[1, \Gamma_F^{D_F - 2}\right]$$

 $Ka_{\Delta} = \left(\frac{u_{\Delta}'}{s_L}\right)^{3/2} \left(\frac{\Delta}{\delta_{th}}\right)^{-1/2}$ $D_k = \frac{8/3 \cdot Ka_{\Delta} + 3.1}{Ka_{\Delta} + 1.4}$ $\Gamma_k = 0.69 \left(2 * \frac{\Delta/\delta_{th}}{max(Ka_{\Delta}^{-1/2}, 2))}\right)$ $\Xi_k = Max \left[1, \Gamma_k^{D_k - 2}\right]$

Modified Fureby model

Modified Keppeler model

Representation of $\rho(x)c(x)$, $\omega(x)$

