A priori DNS analysis of the closure of cross-scalar

dissipation rate of reaction progress variable and
mixture fraction in turbulent stratified flames

Peter Brearley Umair Ahmed Nilanjan Chakraborty

p.brearley@newcastle.ac.uk

UKCTRF Conference
15t-2"d December 2021

83 Newcastle Bl LK CONSORTIUM -
B University (S04 st iows archer




Turbulent Stratified Mixture Combustion

» It occurs when a limited mixing time is
allowed between the unburned reactants
such that some premixing takes place
but not to the extent of homogeneity.
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» It allows leaner overall mixtures to be
used, reducing the burned gas
temperature and NO, emissions.

» A complete description of the flow
requires a passive scalar (e.g. mixture
fraction &) to describe the local mixture
composition and an active scalar (e.g.
reaction progress variable ¢) to
determine the progress of the chemical
reaction.
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Cross-Scalar Dissipation Rate

» Many modelling approaches require require solving the transport
equations of the Favre averaged active and passive scalar variances

c”? and £72, as well as their covariance ¢’¢” to calculate the mean
reaction rate. E.g.
— Presumed probability density function®
— Flamelet based tabulated chemistry?
— Flamelet generated manifold3
» The cross scalar dissipation rate £, is an important unclosed term
appearing in the transport equation of ¢”’£” and its closure is the
focus of this study.
» Modelling of €y, ¢ in the Libby-Williams framework has received lots
of attention*™®, but £ has received very little attention.

Libby & Williams (2000)  “*Ribert et al. (2005)
2Fiorina et al. (2015) ®Robin et al. (2006)
3Nguyen et al. (2010) 5Malkeson & Chakraborty (2011)
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Direct Numerical Simulation Database

» Six single-step chemistry with parameters u’/Sb(¢,:1) =4 or 8, and
initial £4/¢ =1, 2 or 3.7

» The activation temperature and heat of combustion are taken to be
functions of equivalence ratio.®
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Mathematical Definitions

» The cross-scalar dissipation rate is given by
—  pDvc'-ve! __ pDVY}.NVE

Ect = s Ey¢ =
“ p : p

where the mixture fraction & and reaction progress variable ¢ are

defined as
§:YF_YO/S+YOOO/S . Yoo — Y
T N e SN (Y 1y

where s = (Yo /YF)st = 4.0 is the mass stoichiometric ratio for
methane-air mixtures.
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Algebraic Modelling
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» The linear relaxation model I

~ _cfae oy %
Ecg = zcﬁ, Eye = ng 3

» The linear relaxation model fails
to accurately capture the £.¢
evolution throughout the flame.

terms

£¢/e =2.0

» Since £.¢ can take on negative

values, the /2.+/¢

approximation is not valid.

L4/t = 3.0
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Transport Equation Modelling

» The e transport equation is given by

0 (PEce 0 (pU;Eqe 0 O ¢

(pece) + (Pijéce) ( D6$c€>+T1+T2+T3+T4—D2
~~ J unclosed terms
Dy

ot dr;  Oxj

T3 is the turbulent transport contribution

T5 is the density variation contribution

T3 is the scalar-turbulence interaction contribution
Ty is the reaction rate contribution

D1 is the molecular diffusion contribution

D> is the molecular dissipation contribution
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Transport Equation Modelling: Statistical Behaviour

» 77 plays a significant role for
the small u'/Sy(4—1) cases but

diminishes as the turbulence o = @ " )
intensity increases. o
» D; plays an insignificant role in % g
all cases, and can be neglected. ™ ,
» The remaining terms (7%, T3, 2
Ty, Dy) play leading order roles m
and have similar orders of o=,
magnitude. % Q B
» These observations have been . 0T e
reinforced by applying a scaling o '
analyses.%10 Y
9Swaminathan & Bray (2005) S e i
Tennekes & Lumley (1972) T et e e e
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Transport Equation Modelling: T}
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» First term follows from the gradient l 324“
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> ES

capable of predicting both gradient and
counter gradient.
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Transport Equation Modelling: 75
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» It is not sensitive to the degree of e
< o

inhomogeneity, but is sensitive to e 7
turbulence intensity. )
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Transport Equation Modelling: T3

» The scalar-turbulence interaction term is best modelled by grouping it
into three subterms.

T3 ="1T31 + 132 + 133
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Transport Equation Modelling: T3,

Equation
!’ ou'! pg ac!’ oul! 9g .
Talzfppc Ji,PDL 1 ¢ Téi)
dz; Ox; Oxj 9z, Ox; O, o
_pDas” oull oz _pDag“ oul 9z et
(ks (Gl Gk Ox; Oxz; Ox; s |
J J
x
~
<
Y

T3 = — Clpuj c"igj

/(poS,

———¢ 0c
— Copu’¢"=—, C1 =1,C2 =0.15
J kal‘j

£4/€ = 2.0

Ty x D}

> pD(0¢" [0x;)(Ou) /Ox;) and
pD(9c" [0x;)(Ou] /Ox;) can be taken
to scale with pu’/¢(€/k) and
puc”"(€/k) based on previous modelling
strategies.11:12

TTMantel & Borghi (1994)
12Chakraborty et al. (2008)
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Transport Equation Modelling: 739
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Transport Equation Modelling:

—Model|
Equation u’/Sb(¢:1) =4.0 u’/S’b(d,=1) = 8.0

77 T 9 77 " s
T33:_pDac o0& %—pDaiaé Ouj;

£,/ =1.0

___Ouy
T33 = —C'Pﬁc&aix1

£,/ = 2.0

C =0.03

» The behaviour of T33 is expected to be
affected by
pece ~ pD(dc'" [0x1)(0E" /Ox1) and
Ouy /0x1.

£,/ = 3.0
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Transport Equation Modelling:

Equation
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» T4 and D3 can be very large terms and
their difference is important, so they are
commonly modelled together. However,
the models also perform well individually.
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Conclusions

» The density variation term 75, scalar-turbulence interaction term T3,
the reaction rate contribution 7 and the molecular dissipation term
— D> are the leading order contributors.

» 77 is small in comparison to the leading order contributors.

» The new models predict the unclosed terms of the . transport
equation satisfactorily for all the cases, but this is one of the first
attempts to model this, so there is scope for improvement for some of
the terms.

» Future research should address the effects of detailed chemistry and
differential diffusion for higher turbulent Reynolds numbers.
» The models proposed require RANS implementation where

experimental data is available for the purpose of a posteriori
assessment of the models.
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