A priori DNS analysis of the closure of cross-scalar dissipation rate of reaction progress variable and mixture fraction in turbulent stratified flames

Peter Brearley Umair Ahmed Nilanjan Chakraborty p.brearley@newcastle.ac.uk

UKCTRF Conference 1st-2nd December 2021

Turbulent Stratified Mixture Combustion

- It occurs when a limited mixing time is allowed between the unburned reactants such that some premixing takes place but not to the extent of homogeneity.
- It allows leaner overall mixtures to be used, reducing the burned gas temperature and NO_x emissions.
- A complete description of the flow requires a passive scalar (e.g. mixture fraction ξ) to describe the local mixture composition and an active scalar (e.g. reaction progress variable c) to determine the progress of the chemical reaction.

- ► Many modelling approaches require require solving the transport equations of the Favre averaged active and passive scalar variances $\widetilde{c''}^2$ and $\widetilde{\xi''}^2$, as well as their covariance $\widetilde{c''}^{\zeta''}$ to calculate the mean reaction rate. E.g.
 - Presumed probability density function¹
 - Flamelet based tabulated chemistry²
 - Flamelet generated manifold³
- ▶ The cross scalar dissipation rate $\tilde{\varepsilon_{c\xi}}$ is an important unclosed term appearing in the transport equation of $\widetilde{c''\xi''}$ and its closure is the focus of this study.
- ▶ Modelling of $\widetilde{\epsilon_{Y_F\xi}}$ in the Libby-Williams framework has received lots of attention⁴⁻⁶, but $\widetilde{\epsilon_{c\xi}}$ has received very little attention.

¹ Libby & Williams (2000)	⁴ Ribert et al. (2005)		
² Fiorina et al. (2015)	⁵ Robin et al. (2006)		
³ Nguyen et al. (2010)	⁶ Malkeson & Chakraborty	(2011)	
ator Broarlov (Nowcastle University)	LIKCTPE Conference	1st 2nd December 2021	

3/17

Direct Numerical Simulation Database

- ► Six single-step chemistry with parameters u'/S_{b(φ=1)} = 4 or 8, and initial ℓ_φ/ℓ = 1, 2 or 3.⁷
- The activation temperature and heat of combustion are taken to be functions of equivalence ratio.⁸

									0		0.2	0.4	0.0	0.8	1	
$\overline{u_0'/S_{L\langle\phi angle}}$	$\ell_{\xi,0}/\ell_0$	ℓ_0/δ_{th}	Da	Ka	$\langle \phi \rangle$	ϕ_0'	Grid size			u'_{l}	$S_{b(\phi=1)} =$	4.0	u	$S_{b(\phi=1)}$	= 8.0	_
4.0	premixed	3.0	0.750	4.62	1.0	0.35	800×400^{2}	÷	30	-নি'	57.	\sim	م جر ک	202	\sim	
4.0	0.5	3.0	0.750	4.62	1.0	0.35	800×400^{2}	1	. 3 20	34	No A	> 1	~ ~~?			í (
4.0	1.0	3.0	0.750	4.62	1.0	0.35	800×400^{2}	1	\$ ²⁰	2		$\setminus \smile 1$	5 .0			1
4.0	2.0	3.0	0.750	4.62	1.0	0.35	800×400^{2}	ŝ	~ 10	/~/	all s	\sim		\sim		\sim
4.0	3.0	3.0	0.750	4.62	1.0	0.35	800×400^{2}		2	\$ 35		\sim	ar ar	<u> </u>		
8.0	premixed	3.0	0.375	13.1	1.0	0.35	800×400^{2}	~	30	25	s: 🦊	2 ~ ~ '	- The	\sim	10	4
8.0	0.5	3.0	0.375	13.1	1.0	0.35	800×400^{2}	1	7 20	じ郎	9 L ea	\sim	515	ᠰ		
8.0	1.0	3.0	0.375	13.1	1.0	0.35	800×400^{2}	ų.	· 20	53	1 24	$I \subset I$	porti	\searrow	0	0
8.0	2.0	3.0	0.375	13.1	1.0	0.35	800×400^{2}	-0	10	576	8-V3	\sim	22	<mark>≫~</mark> ~∽	0	<u>_</u>
8.0	3.0	3.0	0.375	13.1	1.0	0.35	800×400^{2}			1	3 S _	' 2) -	C-5/2-	× .	_	
10	premixed	3.0	0.3	18.3	1.0	0.35	800×400^{2}		30 5	×	- 200	\sim	0.00	- W	<u> </u>	\sim
10	0.5	3.0	0.3	18.3	1.0	0.35	800×400^{2}				S. S.			\sim	$_{\sim}$ \bigcirc	
10	1.0	3.0	0.3	18.3	1.0	0.35	800×400^{2}	။ မ	~ [∞] 20	"A	🤝		265 47		1	\leq
10	2.0	3.0	0.3	18.3	1.0	0.35	800×400^{2}	-	[≫] 10	Q.	8-3		ð .~`	1500	N)
10	3.0	3.0	0.3	18.3	1.0	0.35	$800{ imes}400^2$	ŝ		~	Crals.	\sim	De C		- (\sum
										10	20 30 4	0 50 60	10	20 30 40	50 60)
											x/δ_{et}			x/δ_{et}		

⁷Brearley et al. (2020)

⁸Tarrazo et al. (2006)

Peter Brearley (Newcastle University)

0 02 04 ^C 06 08 1

The cross-scalar dissipation rate is given by

$$\widetilde{\varepsilon_{c\xi}} = \frac{\overline{\rho D \nabla c'' \cdot \nabla \xi''}}{\overline{\rho}}, \qquad \widetilde{\varepsilon_{Y\xi}} = \frac{\overline{\rho D \nabla Y_F'' \cdot \nabla \xi''}}{\overline{\rho}}$$

where the mixture fraction $\boldsymbol{\xi}$ and reaction progress variable c are defined as

$$\xi = \frac{Y_F - Y_O/s + Y_{O\infty}/s}{Y_{F\infty} + Y_{O\infty}/s}, \qquad c = \frac{\xi Y_{F\infty} - Y_F}{\xi Y_{F\infty} - \max\left(0, \frac{\xi - \xi_{st}}{1 - \xi_{st}}\right) Y_{F\infty}}$$

where $s = (Y_O/Y_F)_{st} = 4.0$ is the mass stoichiometric ratio for methane-air mixtures.

Algebraic Modelling

- The linear relaxation model fails to accurately capture the ε_{cξ} evolution throughout the flame.
- Since *ε̃_{cξ}* can take on negative values, the √*ε̃_c*√*ε̃_ξ* approximation is not valid.

Transport Equation Modelling

• The $\widetilde{\varepsilon_{c\xi}}$ transport equation is given by

$$\frac{\partial \left(\overline{\rho}\widetilde{\varepsilon_{c\xi}}\right)}{\partial t} + \frac{\partial \left(\overline{\rho}\widetilde{u_{j}}\widetilde{\varepsilon_{c\xi}}\right)}{\partial x_{j}} = \underbrace{\frac{\partial}{\partial x_{j}} \left(\rho D \frac{\partial \widetilde{\varepsilon_{c\xi}}}{\partial x_{j}}\right)}_{D_{1}} \underbrace{+T_{1} + T_{2} + T_{3} + T_{4} - D_{2}}_{\text{unclosed terms}}$$

- T_1 is the turbulent transport contribution
- T_2 is the density variation contribution
- ${\it T}_3$ is the scalar-turbulence interaction contribution
- T_4 is the reaction rate contribution
- D_1 is the molecular diffusion contribution
- D_2 is the molecular dissipation contribution

Transport Equation Modelling: Statistical Behaviour

- ► T₁ plays a significant role for the small u'/S_{b(φ=1)} cases but diminishes as the turbulence intensity increases.
- ▶ D₁ plays an insignificant role in all cases, and can be neglected.
- ► The remaining terms (T₂, T₃, T₄, D₂) play leading order roles S and have similar orders of magnitude.
- These observations have been reinforced by applying a scaling analyses.^{9,10}

⁹Swaminathan & Bray (2005)
¹⁰Tennekes & Lumley (1972)

Transport Equation Modelling: T_1

Equation

$$T_{11} = -\frac{\partial}{\partial x_j} \overline{\left(\rho u_j^{\prime\prime} \varepsilon_{c\xi}\right)}$$

Model

$$\begin{split} \overline{\rho u_1'' \varepsilon_{c\xi}} &= -g \frac{\mu_t}{\sigma_{c\xi}} \frac{\partial \widetilde{\varepsilon_{c\xi}}}{\partial x_1} \\ &- (1-g) \frac{\rho u_1'' \varepsilon'' \overline{\rho u_1'' \xi''}}{\overline{\rho} \sqrt{\tilde{k}} \sqrt{\varepsilon''^2} \sqrt{\overline{\xi''^2}}} \\ g &= \exp \left(-C \underbrace{\left[\left(\frac{\rho_0}{\overline{\rho_b}} - 1 \right) \frac{\overline{S_b}}{\sqrt{\tilde{k}}} \right]^2}_{\text{Bray number}} \right) \\ C &= 0.5 \end{split}$$

 First term follows from the gradient hypothesis, and the second term is capable of predicting both gradient and counter gradient.

Peter Brearley (Newcastle University)

Transport Equation Modelling: T_2

Equation

$$\begin{split} T_2 = & \overline{-\frac{D}{\rho}\frac{\partial\rho}{\partial x_i}\left[\dot{\omega}_c\frac{\partial\xi}{\partial x_i} + \frac{\partial\xi}{\partial x_i}\frac{\partial}{\partial x_j}\left(\rho D\frac{\partial c}{\partial x_j}\right) + \frac{\partial c}{\partial x_i}\frac{\partial}{\partial x_j}\left(\rho D\frac{\partial\xi}{\partial x_j}\right)\right]} \\ & + \frac{\overline{D}}{\overline{\rho}}\frac{\partial\overline{p}}{\partial x_i}\left[\dot{\omega}_c\frac{\partial\xi}{\partial x_i} + \frac{\partial\xi}{\partial x_i}\frac{\partial}{\partial x_j}\left(\rho D\frac{\partial\widetilde{c}}{\partial x_j}\right) - \frac{\partial}{\partial x_j}\left(\overline{\rho u_j''c''}\right)\frac{\partial\widetilde{\xi}}{\partial x_i} \\ & + \frac{\partial\widetilde{c}}{\partial x_i}\frac{\partial}{\partial x_j}\left(\rho D\frac{\partial\widetilde{\xi}}{\partial x_j}\right) - \frac{\partial}{\partial x_j}\left(\overline{\rho u_j''\xi''}\right)\frac{\partial\widetilde{c}}{\partial x_i}\right] \end{split}$$

Model

$$T_2 = K\bar{\rho}\tilde{\epsilon_c}\tilde{\epsilon_c}\left(\frac{\rho_0}{\bar{\rho}_b} - 1\right)$$
$$K = 0.1 + \frac{0.15}{1 + \exp\left(-0.5[Re_L - 15]\right)}$$

- Derived from scaling estimate of the expression, including appropriate density weighting.
- It is not sensitive to the degree of inhomogeneity, but is sensitive to turbulence intensity.

Transport Equation Modelling: T_3

The scalar-turbulence interaction term is best modelled by grouping it into three subterms.

$$T_3 = T_{31} + T_{32} + T_{33}$$

$$T_{31} = -\overline{\rho D \frac{\partial c''}{\partial x_i} \frac{\partial u''_j}{\partial x_i}} \frac{\partial \widetilde{\xi}}{\partial x_j} - \overline{\rho D \frac{\partial c''}{\partial x_j} \frac{\partial u''_j}{\partial x_i}} \frac{\partial \widetilde{\xi}}{\partial x_i}} \right\} T_{31}^{(i)}$$
$$-\overline{\rho D \frac{\partial \xi''}{\partial x_j} \frac{\partial u''_j}{\partial x_i}} \frac{\partial \widetilde{c}}{\partial x_i} - \overline{\rho D \frac{\partial \xi''}{\partial x_i} \frac{\partial u''_j}{\partial x_i}} \frac{\partial \widetilde{c}}{\partial x_j}} \right\} T_{31}^{(ii)}$$

$$T_{32} = -\overline{\rho D} \frac{\partial c''}{\partial x_i} \frac{\partial \xi''}{\partial x_j} \frac{\partial u''_j}{\partial x_i} - \overline{\rho D} \frac{\partial c''}{\partial x_j} \frac{\partial \xi''}{\partial x_i} \frac{\partial u''_j}{\partial x_i}$$

$$T_{33} = -\overline{\rho D \frac{\partial c''}{\partial x_j} \frac{\partial \xi''}{\partial x_i}} \frac{\partial \widetilde{u}_j}{\partial x_i} - \overline{\rho D \frac{\partial c''}{\partial x_i} \frac{\partial \xi''}{\partial x_j} \frac{\partial \widetilde{u}_j}{\partial x_i}}$$

Transport Equation Modelling: T_{31} Equation

$$\begin{split} T_{31} &= - \overline{\rho D} \frac{\partial c''}{\partial x_i} \frac{\partial u''_j}{\partial x_i} \frac{\partial \tilde{\xi}}{\partial x_j} - \overline{\rho D} \frac{\partial c''}{\partial x_j} \frac{\partial u''_j}{\partial x_i} \frac{\partial \tilde{\xi}}{\partial x_i} \bigg\} T_{31}^{(i)} \\ &- \overline{\rho D} \frac{\partial \xi''}{\partial x_j} \frac{\partial u''_j}{\partial x_i} \frac{\partial \tilde{c}}{\partial x_i} - \overline{\rho D} \frac{\partial \xi''}{\partial x_i} \frac{\partial u''_j}{\partial x_i} \frac{\partial \tilde{c}}{\partial x_j} \bigg\} T_{31}^{(ii)} \end{split}$$

Model

$$T_{31} = -C_1 \overline{\rho u_j'' c''} \frac{\widetilde{\varepsilon}}{\widetilde{k}} \frac{\partial \widetilde{\xi}}{\partial x_j} -C_2 \overline{\rho u_j'' \xi''} \frac{\widetilde{\varepsilon}}{\widetilde{k}} \frac{\partial \widetilde{c}}{\partial x_j}, C_1 = 1, C_2 = 0.15$$

 $\triangleright \overline{\rho D(\partial \xi'' / \partial x_i)(\partial u''_i / \partial x_i)}$ and $\overline{\rho D(\partial c''/\partial x_i)(\partial u''_i/\partial x_j)}$ can be taken to scale with $\overline{\rho u_{j}^{\prime\prime}\xi^{\prime\prime}}(\widetilde{\varepsilon}/\widetilde{k})$ and $\overline{\rho u_{i}^{\prime\prime}c^{\prime\prime}}(\widetilde{\varepsilon}/\widetilde{k})$ based on previous modelling strategies.11,12

¹¹Mantel & Borghi (1994) ¹²Chakraborty et al. (2008)

Peter Brearley (Newcastle University)

1.0

2.0

 $\ell_{\phi}/\ell=3.0$

$$u'/S_{b(\phi=1)} = 4.0$$

$$u'/S_{b(\phi=1)} = 8.0$$

$$u'/S_{b(\phi=1)} = 8.0$$

$$u'/S_{b(\phi=1)} = 8.0$$

$$u'/S_{b(\phi=1)} = 8.0$$

$$u'/S_{b(\phi=1)} = 0.0$$

Transport Equation Modelling: T_{32}

Peter Brearley (Newcastle University)

Transport Equation Modelling: T_{33}

Transport Equation Modelling: $T_4 - D_2$ Equation

$$\begin{split} T_4 &- D_2 = \overline{D \frac{\partial \dot{\omega}_c}{\partial x_i} \frac{\partial \xi}{\partial x_i}} - \overline{D} \frac{\partial \overline{\dot{\omega}_c}}{\partial x_i} \frac{\partial \tilde{\xi}}{\partial x_i} \\ &- \left(2 \overline{\rho D^2 \frac{\partial^2 c}{\partial x_i \partial x_j} \frac{\partial^2 \xi}{\partial x_i \partial x_j}} - 2 \overline{\rho} \overline{D}^2 \frac{\partial^2 \tilde{c}}{\partial x_i \partial x_j} \frac{\partial^2 \tilde{\xi}}{\partial x_i \partial x_j} \right) \end{split}$$

Model

$$T_4 - D_2 = \bar{\rho} \frac{\tilde{\varepsilon}_{\widetilde{c}\widetilde{\xi}}\tilde{\varepsilon}_{\widetilde{\xi}}}{\tilde{\xi}^{\prime\prime/2}} \left[1 + \left(\frac{c}{1+c}\right)^2 \right]$$
$$\begin{bmatrix} C_1(0.2m - \tilde{c}) - C_2m \end{bmatrix}$$
$$C_1 = 0.35, C_2 = 0.4, m = \frac{\overline{S_b}\sqrt{\tilde{\xi}^{\prime\prime/2}}/D_0\tilde{\varepsilon}_{\xi}}{1 + \overline{S_b}\sqrt{\tilde{c}^{\prime\prime/2}}/D_0\tilde{\varepsilon}_{\xi}}$$

► T₄ and D₂ can be very large terms and their difference is important, so they are commonly modelled together. However, the models also perform well individually.

Peter Brearley (Newcastle University)

Conclusions

- ► The density variation term T₂, scalar-turbulence interaction term T₃, the reaction rate contribution T₄ and the molecular dissipation term -D₂ are the leading order contributors.
- \blacktriangleright T_1 is small in comparison to the leading order contributors.
- The new models predict the unclosed terms of the ε_{cξ} transport equation satisfactorily for all the cases, but this is one of the first attempts to model this, so there is scope for improvement for some of the terms.
- Future research should address the effects of detailed chemistry and differential diffusion for higher turbulent Reynolds numbers.
- The models proposed require RANS implementation where experimental data is available for the purpose of *a posteriori* assessment of the models.

References

- P.A. Libby, F.A. Williams, A presumed Pdf analysis of partially premixed turbulent combustion. Combust. Sci. Technol., 161 (2000) 351–390.
- B. Fiorina et al., Challenging modeling strategies for LES of nonadiabatic turbulent strati ed combustion, Combust. Flame 162 (2015), 4264-4282.
- P.D. Nguyen, L. Vervisch, V. Subramanian, P. Domingo, Multidimensional flamelet generated manifolds for partially premixed combustion. Combust. Flame 157 (2010) 43–61.
- G. Ribert, M. Champion, O. Gicquel, N. Darabiha, D. Veynante, Modeling nonadiabatic turbulent premixed reactive flows including tabulated chemistry. Combust. Flame 141 (2005) 271–280.
- V. Robin, A. Mura, M. Champion, P. Plion, A multi-Dirac presumed PDF model for turbulent reacting flows with variable equivalence ratio. Combust. Sci. Technol. 178 (2006) 1843–1870.
- S.P. Malkeson, N. Chakraborty, Statistical analysis of cross scalar dissipation rate transport in turbulent partially premixed flames: A Direct Numerical Simulation study, Flow Turb. Combust., 87 (2011b) 313-349.
- P. Brearley, U. Ahmed, N. Chakraborty, The relation between flame surface area and turbulent burning velocity in statistically planar turbulent stratified flames, Phys. Fluids, 32 (2020) 125111.
- E. Tarrazo, A. Sanchez, A., Linan, F.A. Williams, A simple one-step chemistry model for partially premixed hydrocarbon combustion. Combust. Flame. 147 (2006) 32–38.
- N. Swaminathan and K.N.C Bray, Effect of dilatation on scalar dissipation in turbulent premixed flames, Combust. Flame, 143 (2005) 549-565.
- 10. H. Tennekes, J. L. Lumley, A first course on turbulence, 1st edition, MIT press (1972).
- T. Mantel, R. Borghi, A new model of premixed wrinkled flame propagation based on a scalar dissipation equation. Combust. Flame, 96 (1994) 443-457.
- N. Chakraborty, J.W. Rogerson, N. Swaminathan, A priori assessment of closures for scalar dissipation rate transport in turbulent premixed flames using direct numerical simulation. Phys. Fluids, 20 (2008) 045106.