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Burning rates o e

Figure 9.2 The effect of enclosure on the rate of burning of a slab of polymethylmethacrylate
(0.76 m x 0.76 m) (Friedman, 1975)

a0 The Pre-flashover Compartment Fire 353
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Jose Torero*, Scaling-Up Fire:

“The link between refinements in the
combustion processes involved in fire
modelling and the potential
Improvements in a fire safety strategy
IS generally blurred by the complexity
of the processes involved, the natural
incompatibility of time and length
scales and the unavoidable scenario
uncertainty. In this context the use
~ of CFD as a basis for the Scaling-
,lf\ Up of fire has a very clear gain.

Torero, J.L. (2013) “Scaling-Up Fire",

Proc. Comb. Inst. 34: 99-124
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Cooling phase problem
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Kirby BR, Wainman DE, Tomlinson LN, Kay TR, Peacock BN. (1994) Natural Fires in Large Scale Compartments.
British Steel Technical, Fire Research Station Collaborative Project Report, UK

Cooke G (1998) Tests to Determine the Behaviour of Fully Developed Natural Fires in a Large

Compartment. Fire Note 4, Fire Research Station, Building Research Establishment
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Cooling phase — BST/FRS
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Cooling phase — BST/FRS

(a) Three locations = TC temperatures at ceiling height

Dai, X., Welch, S., Rush, D., Charlier, M. & Anderson, J. (2019) “Characterising natural
fires in large compartments — revisiting an early travelling fire test (BST/FRS 1993) with
CFD?”, Proc. 15th Int. Conf. & Exhibition on Fire Science & Engineering (Interflam 2019),

Royal Holloway College, Nr Windsor, UK, 1-3 July 2019.

o0
-
o v—{
-
(D)
(D) 12000 4
-
ED 1000
-
- RO0 4
= T
b @ 600 4
=
L w4001
T L 0
N -
) = 0
5‘:‘1 o lgnition side, TEST === lgnition side, FDS
[, ¥ Centre of compartment, TEST == Centre of compartment, FDS
E e Opening side, TEST — = Opening side, FDS
L'\ T T I T L I
O ] 20 40 6l 80 100
—
E’ Time (min)
O
Q
[]
04
an




Cooling phase — BST/FRS

Time = 17.0 min A Time = 17.5 min

Ineering

346

Time = 20.5 min Time = 28.5 min il 778

G610

92

Time = 40.0 min

— =

Figure 6: Predicted temperatures along the compartment midline from the 10 cm mesh simulation of BST/FRS
large-scale fire test no. 2 [25].

Janardhan, R.K. & Hostikka, S. (2021) “When is the fire spreading and when it travels?
— Numerical simulations of compartments with wood crib fire loads”, Fire Safety Journal
(2021), doi: https://doi.org/10.1016/j.firesaf.2021.103485.
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Cooling phase — BST/FRS
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Janardhan, R.K. & Hostikka, S. (2021) “When is the fire spreading and when it travels?
— Numerical simulations of compartments with wood crib fire loads”, Fire Safety Journal
(2021), doi: https://doi.org/10.1016/j.firesaf.2021.103485.
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Charley, P (2021) “Characterization of Role of Smouldering Char via Fire Simulation”,
MEng thesis, School of Engineering, University of Edinburgh [unpublished]
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Thermal conductivities

‘ E Table 4 A comparative review of the temperature dependence of thermal conductivity of wood® and char
O ) Density Temperature Thermal Conductivity Rate
D) Materials ; . References
(kg/m”) (°C) (Wn/K) (/°C)
. S Wood
o0 Wood® N/A =20 0.129 (20 °C) 0.2%/°C Ragland et al., 1991
S: Wood N/A =20 N/A 0.2~0.3%/°C Glass & Zelinka, 2011
LTJ Pine 590 35-118 0.166 Constant Alves & Figueiredo, 1989
>j Pine 455 35-95 0.168 - 0.177 0.08%/°C Hankalin et al., 2009
<+ Birch 443 20-100 0.177 -0.207 0.26%/°C Sulemman et al.. 1999
qq-_% Beech 640 10-30 0.120 - 0.126 0.25%/°C Sonderegger et al., 2011
CG Balsam fir/spruce 360 37-67 0.0986—-0.1114 0.32%/°C Gupta et al., 2003
(D Pine/spruce N/A 20-200 0.122-0.139 0.08%/°C Fredlund, 1993
orway spruce - .110-0.1¢ 27%/°C anssen, 2004
) N v Sp: 600 20-110 0.110-0.140 0.27%/°C T 2004
orway spruce £ - 111 -0. .08%/°C anssei, £
(i N 400 20-110 0.111-0.120 0.08%/°C J; 2004
'E: Norway spruce 446 10-30 0.086 — 0.090 0.22%/°C Sonderegger et al., 2011
Char
aple char . ronli,
é Maple cl 200 90 0.071 N/A Gronli, 1996
aple/beech/birch char 3 > .05 ) 2~0.7%/°C agland ef al.,
LI\ Maple/beech/birch cl N/A 20 0.052 (20 °C) 0.2~0.7%/°C Ragland et al., 1991
1me/spruce char : = .05 ) 11%/°C redlund, :
D) Pine/ I N/A 20 0.051 (20 °C) 0.11%/°C Fredlund, 1993
alsam fir/spruce char 37— .0946 —0.113 73%/°C upta et al., 3
— Bal fur/ 1 299 3767 0.0946—0.1156 0.73%/°C G 1., 2003
E Pine char 240 35-95 0.098 — 0.107 0.17%/°C Hankalin et al., 2009
1me char : 30— . —0. 104%/°C ves & Figuerredo, |
B} Pine cl N/A 30-220 0.091 -0.109 0.104%/°C Alves & Figueiredo, 1989
O TOnly conductivity values in transverse directions presented here:
"Wood species not specified.
Lﬂ Liu, C (2021) “Characterisation of Travelling Fires — The Cooling Phase”,
Dd SAFE MSc dissertation, School of Engineering, University of Edinburgh
m [unpublished]
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Wood charring
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Wood charring
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Wood charring
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Heat of combustion

QD Table 8 Heat of combustion for natural fuels and their pyrolysis products as charcoal and volatiles
. E Wood Source Apparatus Char yield Heat of combustion (MI/kg) Energy distribution
[ : (%) Volatile Char Wood Volatile (%) Char (%)
(D) Douglas fir Susott, 1982 TGA+EGA 20.1% 17.5 31.90 20.25 68% 32%
O Douglas fir Susott, 1982 TGA+EGA 22.2% 16.7 31.94 20.09 64.7% 35.2%
. S Douglas fir Janssens. 1991a Cone (50)! 13% 10.9 N/A N/A N/A N/A
QO Douglas fir Janssens. 1991a Cone (65) 13% 11.3 N/A N/A N/A N/A
g Douglas fir Spearpoint & Quintiere, 2000  Cone (75) N/A 9.2 355 N/A N/A N/A
LTJ European beech  Roberts. 1964a Bomb 16-17% 16.6 343 19.5 ~70% ~30%
Ponderosa pine  Susott, 1982 TGA+EGA 19.5% 17.90 32.85 20.82 69.2% 30.8%
>§ Ponderosa pine  Susott, 1982 TGA+EGA 20.3% 17.95 32.82 20.97 68.2% 31.8%
46 Larch wood Susott. 1982 TGA+EGA 20.7% 16.6 32.29 19.83 66.3% 33.7%
- Larch wood Susott, 1982 TGA+EGA 23.7% 16.5 32.15 20.22 62.4% 37.6%
CYS Larch wood Shafizadeh, 1984 Bomb 26.7% 15.6 30.01 19.47 58.8% 41.2%
CD Poplar wood Shafizadeh. 1984 Bomb 21.7% 16.4 29.8 19.3 66% 34%
D) White fir Susott, 1982 TGA+EGA 22.1% 16.99 33.18 20.57 65% 35%
;.1 Grand fir Susott, 1982 TGA+EGA 20.7% 17.19 32.00 20.25 71% 29%
E Spruce wood Our lab Cone (20) 23.6% 10.8 27 14.4 54.1% 45.9%
Spruce wood Hagen et al.. 2009 Cone (40) 11.5% ~9.8 N/A N/A N/A N/A
P~ Spruce wood Hagen et al.. 2009 Cone (50) 9% ~10.2 N/A N/A N/A N/A
L& Spruce wood Hagen et al.. 2009 Cone (65) ~7.5% ~10.5 N/A N/A N/A N/A
Spruce wood Dietenberger et al., 2012 Cone (35) ~19.4% 10.5 26.3 13.6 62.2% 37.8%
8 Spruce wood Dietenberger et al.. 2012 Cone (50) ~18.2% 11.6 28.8 14.7 64.5% 35.5%
+ Spruce wood Dietenberger et al., 2012 Cone (65) ~16.7% 10.98 30.95 14.3 63.9% 36.1%
g lthe value in bracket stands for the imposed heat flux in Cone Calorimeter
&
LTJ Liu, C (2021) “Characterisation of Travelling Fires — The Cooling Phase”,
Dd SAFE MSc dissertation, School of Engineering, University of Edinburgh
m [unpublished]
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Ny: “Liege test series”, LB7 Test, Marchienne, Belgium, 2018
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Figure 2. Overview of test setup in elevation: compartment structure, plate thermometer and
thermocouple instrumentations (marked with pink square dot), and location of sticks.
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FDS modelling for calibration, “Liege test series”, LB7

o Grid cell resolution in elevation view
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Figure 5. Grid cell resolution of the model: 1.5 cm x 1.5 cm x 1.75 cm per cell for wood sticks
in porous crib structure, 6 cm x 6 cm x 7cm and 3 cm x 3 cm % 3.5 cm cell size in gas phase,
total number of cells ~1.3 million.
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X _ FDS modelling for calibration, “Liege test series”, LB7

o Fire development within the wood crib
o Temperature development within the wood crib
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Figure 11. (a) Flame development within wood cribs (wood sticks “obstruction”
removed in Smokeview for clearer flame demonstration), and (b) Temperature
development at the compartment central ‘slice’.
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FDS modelling for calibration, “Liege test series”, LB7
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o Fire spread rate vs. HRR (decoupling time dependency)
o Fire height comparison
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SAFE MSc dissertation, School of Engineering, University of Edinburgh
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Grid Sensitivity Studies




FDS grid sensitivity studies, “Liege test series”, LB7
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o Cell size sensitivity in gas phase
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Figure 12. Cell size sensitivity at gas phase on (a) HRR, and (b) Fire spread radius.
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FDS grid sensitivity studies, “Liege test series”, LB7
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o Cell size sensitivity in gas and solid phases

Case Fuel bed Gas phase Horizontal pitch Vertical pitch Cells
Baseline 1.5x1.5x1.75 6X6x7 9 (6 cells between) 3 (2 cells between) 1 045 787
Half gas 1.5x1.5x1.75 3x3x3.5 9 (6 cells between) 3 (2 cells between) 2201472

Half solid 0.75x0.75x0.875 3x3x3.5 18 (12cells between) 6 (4 cells between) 7 237 989




FDS grid sensitivity studies, “Liege test series”, LB7
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- FDS gnd sensitivity studies, “Liege test series”, LB7
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TRAVELLING FIRE IN FULL SCALE EXPERIMENTAL BUILDING
SUBJECTED TO OPEN VENTILATION CONDITIONS

Ali Nadjai', Naveed Alam?, Marion Charlier®, Olivier Vassart*, Xu Dai’ Jean-Marc Franssen®, Johan
Sjostrom’,

ABSTRACT

In the frame of the European RFCS TRAFIR project, three large compartment fire tests involving steel
structure were conducted by Ulster University. aiming at understanding in which conditions a travelling
fire develops, as well as how it behaves and impacts the surrounding structure. During the experimental
programme, the path and geometry of the travelling fire was studied and temperatures, heat fluxes and
spread rates were measured. Influence of the travelling fire on the structural elements was also monitored
during the travelling fire tests. This paper provides details related to the influence of a travelling fire on a
central structural steel column. The experimental data is presented in terms of gas temperatures recorded
in the test compartment near the column, as well as the temperatures recorded in the steel column at different
levels. Because of the large experimental data, only the fire test n°1 results are discussed in this paper.

Nadjai, A., Alam, N., Charlier, M., Vassart, O., Dai, X., Franssen, J.-M. & Sjostrém, J. (2020)
“Travelling fire in full scale experimental building subjected to open ventilation conditions”,
Structures in Fire 2020, University of Queensland, Brisbane, Australia, 30 November — 2
December 2020 doi:10.14264/987a305
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Conclusions (1)

o Reconstruction of a uniform wood fuel bed for fire spread, is achieved
through using a stick-to-stick model with simple pyrolysis and an ignition
temperature setup. Compared with previous research the results show
more parameters being comparable to the full suite of test data,
suggesting potential credibility of the model for predicting fire spread
rate, flame temperature, incidental radiant heat flux, burn away, and
most importantly, the total HRR evolution.

o Generalisation of a simplistic single plateau representation of wood
combustion to a two plateau model, accommodating charring, has been
successfully demonstrated with reproduction of crib fire results.
Extension to compartment scale underway with current simulations.

o The thermal properties of the char vary significantly but impact on
surface temperatures, hence reradiation to gas phase, found to be
negligible at relevant timescales.

o Hence previously observed discrepancies in the cooling phase
temperatures are predominantly associated with limitations in
representation of heat transfer processes associated with the
glowing char; explicit treatment not currentl included in FDS.

BRE Centre for Fire Safety Engineering



o The mesh scheme which adopts a finer mesh within the crib structure
and relatively coarse mesh in the gas phase, provides an viable
practical solution for modelling such crib fires, with potential for scaling
up to compartment level. Some differences are found but they may be
expected to be small when spread on upper surface of crib driven
mainly by remote heating, not local flame front.

o New results with a very fine mesh inside the crib structure (now
7.5/8.75mm cells, giving 12x4 cells between sticks in elevation) have
confirmed the plausibility of the original results with a coarser mesh
(15/17.5mm cells with 6x2 cells between sticks).

o The fine grid model has a total of 7.2M cells, simulation of 20 minutes
test using 78 processors requires ~12 x 48hr jobs; the coarser mesh |
models run ~14 times as far and hence can be used for parametric
studies (~10 parameters, x3 cases each = 30 simulations, as
reported previously).
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A group of leading academics from 19 United Kingdom institutions have been joined by internationally recognised experts to form UKCTRF.As a
consortium, they will make a focussed effort to address the global and UK challenges of energy efficiency, environmental friendliness and high-fidelity
fire safety.
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