Numerical Modelling of Fire Spread on Wood Cribs: the Role of the Char and Enhanced Grid Sensitivity Studies

UKCTRF Annual conference 2 December 2021

Chang Liu, Peter Charley, Xu Dai, Stephen Welch

BRE Centre for Fire Safety Engineering

Travelling fires for structures

University of Ulster, 6-8 June 2018

Burning rates

The Pre-flashover Compartment Fire

* Drysdale (2011) *An introduction to fire dynamics*, Wiley, 3rd ed.

Figure 9.2 The effect of enclosure on the rate of burning of a slab of polymethylmethacrylate $(0.76 \text{ m} \times 0.76 \text{ m})$ (Friedman, 1975)

353

Jose Torero*, <u>Scaling-Up Fire</u>:

"The link between refinements in the combustion processes involved in fire modelling and the potential improvements in a fire safety strategy is generally blurred by the complexity of the processes involved, the natural incompatibility of time and length scales and the unavoidable scenario uncertainty. In this context the use of CFD as a basis for the Scaling-Up of fire has a very clear gain.

Torero, J.L. (2013) "Scaling-Up Fire", Proc. Comb. Inst. 34: 99-124

Cooling phase problem

BST/FRS 1993 Fire Tests

Kirby BR, Wainman DE, Tomlinson LN, Kay TR, Peacock BN. (1994) Natural Fires in Large Scale Compartments. British Steel Technical, Fire Research Station Collaborative Project Report, UK Cooke G (1998) Tests to Determine the Behaviour of Fully Developed Natural Fires in a Large Compartment. Fire Note 4, Fire Research Station, Building Research Establishment

BST/FRS 1993 Fire Tests

Kirby BR, Wainman DE, Tomlinson LN, Kay TR, Peacock BN. (1994) Natural Fires in Large Scale Compartments. British Steel Technical, Fire Research Station Collaborative Project Report, UK Cooke G (1998) Tests to Determine the Behaviour of Fully Developed Natural Fires in a Large Compartment. Fire Note 4, Fire Research Station, Building Research Establishment

Kirby BR, Wainman DE, Tomlinson LN, Kay TR, Peacock BN. (1994) Natural Fires in Large Scale Compartments. British Steel Technical, Fire Research Station Collaborative Project Report, UK Cooke G (1998) Tests to Determine the Behaviour of Fully Developed Natural Fires in a Large Compartment. Fire Note 4, Fire Research Station, Building Research Establishment

Dai, X., Welch, S., Rush, D., Charlier, M. & Anderson, J. (2019) "Characterising natural fires in large compartments – revisiting an early travelling fire test (BST/FRS 1993) with CFD", Proc. 15th Int. Conf. & Exhibition on Fire Science & Engineering (Interflam 2019), Royal Holloway College, Nr Windsor, UK, 1-3 July 2019.

Figure 6: Predicted temperatures along the compartment midline from the 10 cm mesh simulation of BST/FRS large-scale fire test no. 2 [25].

Janardhan, R.K. & Hostikka, S. (2021) "When is the fire spreading and when it travels? – Numerical simulations of compartments with wood crib fire loads", Fire Safety Journal (2021), doi: https://doi.org/10.1016/j.firesaf.2021.103485.

BRE Centre for Fire Safety Engineering

Janardhan, R.K. & Hostikka, S. (2021) "When is the fire spreading and when it travels? – Numerical simulations of compartments with wood crib fire loads", Fire Safety Journal (2021), doi: https://doi.org/10.1016/j.firesaf.2021.103485.

Cone calorimeter

Charley, P (2021) "Characterization of Role of Smouldering Char via Fire Simulation", MEng thesis, School of Engineering, University of Edinburgh [unpublished]

Thermal conductivities

Table 4 A comparative review of the temperature dependence of thermal conductivity of wood † and char							
	Density	Temperature	Thermal Conductivity	Rate			
Materials	(kg/m^3)	(°C)	(W/m/K)	(/°C)	References		
Wood							
Wood*	N/A	>20	0.129 (20 °C)	0.2%/°C	Ragland et al., 1991		
Wood	N/A	>20	N/A	0.2~0.3%/°C	Glass & Zelinka, 2011		
Pine	590	35 - 118	0.166	Constant	Alves & Figueiredo, 1989		
Pine	455	35 – 95	0.168 - 0.177	0.08%/°C	Hankalin et al., 2009		
Birch	443	20 - 100	0.177 - 0.207	0.26%/°C	Suleiman et al., 1999		
Beech	640	10 - 30	0.120 - 0.126	0.25%/°C	Sonderegger et al., 2011		
Balsam fir/spruce	360	37 – 67	0.0986 - 0.1114	0.32%/°C	Gupta et al., 2003		
Pine/spruce	N/A	20 - 200	0.122 - 0.139	0.08%/°C	Fredlund, 1993		
Norway spruce	600	20 - 110	0.110 - 0.140	0.27%/°C	Janssen, 2004		
Norway spruce	400	20 - 110	0.111 - 0.120	0.08%/°C	Janssen, 2004		
Norway spruce	446	10 - 30	0.086 - 0.090	0.22%/°C	Sonderegger et al., 2011		
Char							
Maple char	200	90	0.071	N/A	Grønli, 1996		
Maple/beech/birch char	N/A	>20	0.052 (20 °C)	0.2~0.7%/°C	Ragland et al., 1991		
Pine/spruce char	N/A	>20	0.051 (20 °C)	0.11%/°C	Fredlund, 1993		
Balsam fir/spruce char	299	37 – 67	0.0946 - 0.1156	0.73%/°C	Gupta et al., 2003		
Pine char	240	35 – 95	0.098 - 0.107	0.17%/°C	Hankalin et al., 2009		
Pine char N/A 30 - 220		30 - 220	0.091 - 0.109	0.104%/°C	Alves & Figueiredo, 1989		

[†]Only conductivity values in transverse directions presented here;

*Wood species not specified.

Liu, C (2021) "Characterisation of Travelling Fires – The Cooling Phase", SAFE MSc dissertation, School of Engineering, University of Edinburgh [unpublished]

Janssens, M. 1991b. Rate of Heat Release of Wood Products. Fire Safety Journal, 17(181): 217-238.

Janssens, M. 1991b. Rate of Heat Release of Wood Products. Fire Safety Journal, 17(181): 217-238.

Forest Products Laboratory. 2010. Wood handbook, Wood as an engineering material. General Technical Report FPL-GTR-190. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.

Centre for Fire Safety Engineering BRE

Forest Products Laboratory. 2010. Wood handbook, Wood as an engineering material. General Technical Report FPL-GTR-190. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.

Heat of combustion

	Table 8 Heat of comb	ustion for natura	al fuels and the	ir pyrolysis pro	oducts as char	coal and vola	tiles		
Wood			Char yield	Heat of combustion (MJ/kg)			Energy distribution		
Wood	Source	Apparatus	(%)	Volatile	Char	Wood	Volatile (%)	Char (%)	
Douglas fir	Susott, 1982	TGA+EGA	20.1%	17.5	31.90	20.25	68%	32%	
Douglas fir	Susott, 1982	TGA+EGA	22.2%	16.7	31.94	20.09	64.7%	35.2%	
Douglas fir	Janssens, 1991a	Cone (50) ¹	13%	10.9	N/A	N/A	N/A	N/A	
Douglas fir	Janssens, 1991a	Cone (65)	13%	11.3	N/A	N/A	N/A	N/A	
Douglas fir	Spearpoint & Quintiere, 2000	Cone (75)	N/A	9.2	35.5	N/A	N/A	N/A	
European beech	Roberts, 1964a	Bomb	16-17%	16.6	34.3	19.5	~70%	~30%	
Ponderosa pine	Susott, 1982	TGA+EGA	19.5%	17.90	32.85	20.82	69.2%	30.8%	
Ponderosa pine	Susott, 1982	TGA+EGA	20.3%	17.95	32.82	20.97	68.2%	31.8%	
Larch wood	Susott, 1982	TGA+EGA	20.7%	16.6	32.29	19.83	66.3%	33.7%	
Larch wood	Susott, 1982	TGA+EGA	23.7%	16.5	32.15	20.22	62.4%	37.6%	
Larch wood	Shafizadeh, 1984	Bomb	26.7%	15.6	30.01	19.47	58.8%	41.2%	
Poplar wood	Shafizadeh, 1984	Bomb	21.7%	16.4	29.8	19.3	66%	34%	
White fir	Susott, 1982	TGA+EGA	22.1%	16.99	33.18	20.57	65%	35%	
Grand fir	Susott, 1982	TGA+EGA	20.7%	17.19	32.00	20.25	71%	29%	
Spruce wood	Our lab	Cone (20)	23.6%	10.8	~27	14.4	54.1%	45.9%	
Spruce wood	Hagen et al., 2009	Cone (40)	11.5%	~9.8	N/A	N/A	N/A	N/A	
Spruce wood	Hagen et al., 2009	Cone (50)	9%	~10.2	N/A	N/A	N/A	N/A	
Spruce wood	Hagen et al., 2009	Cone (65)	~7.5%	~10.5	N/A	N/A	N/A	N/A	
Spruce wood	Dietenberger et al., 2012	Cone (35)	~19.4%	10.5	26.3	13.6	62.2%	37.8%	
Spruce wood	Dietenberger et al., 2012	Cone (50)	~18.2%	11.6	28.8	14.7	64.5%	35.5%	
Spruce wood	Dietenberger et al., 2012	Cone (65)	~16.7%	10.98	30.95	14.3	63.9%	36.1%	

¹the value in bracket stands for the imposed heat flux in Cone Calorimeter

Liu, C (2021) "Characterisation of Travelling Fires – The Cooling Phase", SAFE MSc dissertation, School of Engineering, University of Edinburgh [unpublished]

Model representations

Liu, C (2021) "Characterisation of Travelling Fires - The Cooling Phase", SAFE MSc dissertation, School of Engineering, University of Edinburgh [unpublished]

Crib fire experiments

	e Tools Gamba, Charlier & ×		
ß	Bookmarks ×		
 Propagation tests with uniformly distributed cellulosic fire load 1 Introduction 2 First series of tests (LA) 2.1 Ignition system 2.2 Test description 2.3 Measured quantities in the LA series 	ELSEVIER	Fire Safety Journal 117 (2020) 103213 Contents lists available at ScienceDirect Fire Safety Journal journal homepage: http://www.elsevier.com/locate/firesaf	
	 (B) 3.1 Test description 3.2 Measured quantifies in the LB series 4 Discussion 5 Conclusions CRediT authorship contribution statement Declaration of competing interest 	Propagation tests wit Antonio Gamba ^{a,*} , Marion ^a Liege University, UEE Department, Belgium ^b ArcelorMittal Global R&D, Luxembourg	ch uniformly distributed cellulosic fire load
	 Acknowledgements Appendix A Supplementary data References 	Keywords: Natural fire tests Fire spread Fuel arrangement	A B S T R A C T In the recent past, the necessity to have a better understanding of fire dynamics and of the full structural response under real fires was the motivation for several large-scale non-standard fire tests. Nowadays, the novel need to better comprehend the fire dynamics behind the so called "travelling fires" underlined the limitations of those non-standard fire tests. The lack of standardised procedures does not allow making effective comparisons and drawing scientific conclusion from these tests. The fire group of Liege University performed eleven non-standard or "natural fire" tests within the context of the RFCS research project TRAFIR sponsored by the E.U. Commission (grant N°754,198). The aim of this experimental campaign was to determine a uniformly distributed fuel

0

"Liege test series", LB7 Test, Marchienne, Belgium, 2018

Photos regarding the experiment:

Figure 1. (a) Skewed view of test rig without wood sticks, and (b) Side view of test setup.

"Liege test series", LB7 Test, Marchienne, Belgium, 2018

Figure 2. Overview of test setup in elevation: compartment structure, plate thermometer and thermocouple instrumentations (marked with pink square dot), and location of sticks.

Centre for Fire Safety Engineering BRE

Figure 5. Grid cell resolution of the model: 1.5 cm × 1.5 cm × 1.75 cm per cell for wood sticks in porous crib structure, 6 cm × 6 cm × 7cm and 3 cm × 3 cm × 3.5 cm cell size in gas phase, total number of cells ~1.3 million.

- Fire development within the wood crib
- Temperature development within the wood crib

Figure 11. (a) Flame development within wood cribs (wood sticks "obstruction" removed in Smokeview for clearer flame demonstration), and (b) Temperature development at the compartment central 'slice'.

Fig.43 Comparisons of the fire spread on top layer of wood cribs in FDS and LB7 test

Fig.44 Comparisons between the FDS model and test: (a) evolution of the fire spread radius for the top layer of cribs; (b) calculated fire spread rate for the top layer of cribs

• Fire spread rate vs. HRR (decoupling time dependency)

• Fire height comparison

Liu, C (2021) "Characterisation of Travelling Fires – The Cooling Phase", SAFE MSc dissertation, School of Engineering, University of Edinburgh [unpublished]

Centre for Fire Safety Engineering BRE

Grid Sensitivity Studies

Ο

FDS grid sensitivity studies, "Liege test series", LB7

Cell size sensitivity in gas phase

Figure 12. Cell size sensitivity at gas phase on (a) HRR, and (b) Fire spread radius.

\circ $\,$ Cell size sensitivity in gas and solid phases $\,$

Case	Fuel bed	Gas phase	Horizontal pitch	Vertical pitch	Cells
Baseline	1.5 x 1.5 x 1.75	6 x 6 x 7	9 (6 cells between)	3 (2 cells between)	1 045 787
Half gas	1.5 x 1.5 x 1.75	3 x 3 x 3.5	9 (6 cells between)	3 (2 cells between)	2 201 472
Half solid	0.75 x 0.75 x 0.875	3 x 3 x 3.5	18 (12 cells between)	6 (4 cells between)	7 237 989

Ο

FDS grid sensitivity studies, "Liege test series", LB7

Cell size sensitivity in solid phase

4,000 □HalfCellSolid 3,500 Baseline 3,000 Heat Release Rate (kW) 2,500 2,000 1,500 1,000 500 0 200 600 800 1,000 1,200 400 0 Time (s)

CellSizeHalfSolid v baseline

FDS grid sensitivity studies, "Liege test series", LB7

FDS grid sensitivity studies, "Liege test series", LB7

FDS grid sensitivity studies, "Liege test series", LB7

	View Sig	n Window Help			
Home	Tools	Paper Templete	Sif2 ×		
8 2	7 🖶	$\boxtimes \mathbf{Q}$	⑦ ④ 1 / 12 ト ⑦ ○ ⊕ 153% ▼ □ ♥ ♥ Ø Ø.		
				^	(
					Ŀ
					Ľ
	Si	F 2020– The 1	1 th International Conference on Structures in Fire		4
	The University of Queensiand, Brisbane, Australia, June 24-26, 2020				
		TRAVI	ELLING FIRE IN FULL SCALE EXPERIMENTAL BUILDING		
			SUBJECTED TO OPEN VENTILATION CONDITIONS		
		411 AT 11 11 AT			
		Alı Nadjaı', N	aveed Alam ² , Marion Charlier ³ , Olivier Vassart ⁴ , Xu Dai ³ , Jean-Marc Franssen ⁶ , Johan Siöström ⁷		
			Sjostom ,		
•				4	(
	AI	BSTRACT			
	In	the frame of f	the European RECS TRAFIR project, three large compartment fire tests involving steel		
	str	ucture were co	onducted by Ulster University, aiming at understanding in which conditions a travelling		
	fir	e develops, as	well as how it behaves and impacts the surrounding structure. During the experimental		
	pro	ogramme, the	path and geometry of the travelling fire was studied and temperatures, heat fluxes and		
	spi	read rates were	the measured. Influence of the travelling fire on the structural elements was also monitored ling fire tests. This paper provides details related to the influence of a travelling fire on a		
	ce	ntral structural	steel column. The experimental data is presented in terms of gas temperatures recorded		
		the test compar	rtment near the column, as well as the temperatures recorded in the steel column at different		
	1 n	1 D	of the large experimental data, only the fire test p°1 results are discussed in this paper		
	in lev	els. Because o	i me large experimental data, only me me test n'i results are discussed in this paper.		

"Travelling fire in full scale experimental building subjected to open ventilation conditions", Structures in Fire 2020, University of Queensland, Brisbane, Australia, 30 November – 2 December 2020 doi:10.14264/987a305

Nadjai, A., Alam, N., Charlier, M., Vassart, O., Dai, X., Franssen, J.-M. & Sjöström, J. (2020) "Travelling fire in full scale experimental building subjected to open ventilation conditions", Structures in Fire 2020, University of Queensland, Brisbane, Australia, 30 November – 2 December 2020 doi:10.14264/987a305

Nadjai, A., Alam, N., Charlier, M., Vassart, O., Dai, X., Franssen, J.-M. & Sjöström, J. (2020) "Travelling fire in full scale experimental building subjected to open ventilation conditions", Structures in Fire 2020, University of Queensland, Brisbane, Australia, 30 November – 2 December 2020 doi:10.14264/987a305

BRE Centre for Fire Safety Engineering

Full scale experiments

Constate

iout stat full dept

upersite block

Nadjai, A., Alam, N., Charlier, M., Vassart, O., Dai, X., Franssen, J.-M. & Sjöström, J. (2020) "Travelling fire in full scale experimental building subjected to open ventilation conditions", Structures in Fire 2020, University of Queensland, Brisbane, Australia, 30 November – 2 December 2020 doi:10.14264/987a305

Nadjai, A., Alam, N., Charlier, M., Vassart, O., Dai, X., Franssen, J.-M. & Sjöström, J. (2020) "Travelling fire in full scale experimental building subjected to open ventilation conditions", Structures in Fire 2020, University of Queensland, Brisbane, Australia, 30 November – 2 December 2020 doi:10.14264/987a305

Centre for Fire Safety Engineering

BRE

Conclusions (1)

- Reconstruction of a uniform wood fuel bed for fire spread, is achieved through using a stick-to-stick model with simple pyrolysis and an ignition temperature setup. Compared with previous research the results show more parameters being comparable to the full suite of test data, suggesting potential credibility of the model for predicting fire spread rate, flame temperature, incidental radiant heat flux, burn away, and most importantly, the total HRR evolution.
- Generalisation of a simplistic single plateau representation of wood combustion to a two plateau model, accommodating charring, has been successfully demonstrated with reproduction of crib fire results. Extension to compartment scale underway with current simulations.
- The thermal properties of the char vary significantly but impact on surface temperatures, hence reradiation to gas phase, found to be negligible at relevant timescales.
- Hence previously observed discrepancies in the cooling phase temperatures are predominantly associated with limitations in representation of heat transfer processes associated with the glowing char; explicit treatment not currentl included in FDS.

Conclusions (2)

- The mesh scheme which adopts a finer mesh within the crib structure and relatively coarse mesh in the gas phase, provides an viable practical solution for modelling such crib fires, with potential for scaling up to compartment level. Some differences are found but they may be expected to be small when spread on upper surface of crib driven mainly by remote heating, not local flame front.
- New results with a very fine mesh inside the crib structure (now 7.5/8.75mm cells, giving 12x4 cells between sticks in elevation) have confirmed the plausibility of the original results with a coarser mesh (15/17.5mm cells with 6x2 cells between sticks).
- The fine grid model has a total of 7.2M cells, simulation of 20 minutes test using 78 processors requires ~12 x 48hr jobs; the coarser mesh models run ~14 times as far and hence can be used for parametric studies (~10 parameters, x3 cases each = 30 simulations, as reported previously).

Acknowledgements (1)

https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/R029369/1

Fire degree project students

Structural and Fire Safety Engineering Dissertation (90 credits) MEng thesis (50 credits)

19/20 students

• Miss Chang Liu (SAFE), Yang Xu (SAFE)

20/21 students

• Peter Charley (MEng), Mr Chang A. Liu (SAFE)

TRAFIR Project

Characterization of TRAvelling FIRes in large compartments

Funding from the Research Fund for Coal and Steel (RFCS) - European Commission

Industrial led – ArcelorMittal (1/07/2017 \rightarrow 31/12/2020)

- testing (isolated elements and simplified fire progression, as well as a full-scale large compartment)
- modelling (both simplified analytical/phenomenological models and CFD).

Project partners:

Edinburgh fire

- Colleagues and students: 7 Academic Staff (+1 retired) 5 Research staff c. 20 PhD Students 25+ MSc students ~10 pa UG students Visiting researchers
- External Relationships:
 - EPSRC
 - ArcelorMittal (RFCS TRAFIR project)
 - BRE Trust (FireGrid, PhD Intelligent Egress)
 - Fire & Rescue Services
 - International academic/research partn
 - UQ (Hidalgo, Maluk, Lange, Gupta...)
 - CVUT Prague (Wald, Horová...)
 - RISE (Sjöström, …)
 - Liège (Franssen, Gamba...)
 - Ulster (Nadjai, Alam...)

Research Council

Questions?