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LES of Hydrogen Enriched Flames

The experimental configuration of the PRECCINSTA burner
with a view of the swirler structure on the right.

Experimental work

• Hydrogen enriched flames based on PRECCINSTA 

burner studied experimentally at DLR (Chterev, 2019).

• Premixed, swirl stabilised flames

• Optical access to chamber: quartz glass side walls

• Pressure measured by two microphones in chamber (c) 

and plenum (p).

Backgrounds

• H2 combustion exhibits higher laminar flame speed, higher 

flame temperature and lower lean flammability limit.

• Lean premixed combustion often exhibits thermoacoustic and 

hydrodynamic instability.
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BOFFIN-LESc

Models and methods

• Smagorinsky model with the dynamic procedure of Piomelli and Liu (Piomelli, 1995) 

• Transported probability density function (pdf) approach— chemical source term closed

• Eulerian stochastic field method — solve pdf equation

In house compressible LES code: BOFFIN-LESc (Fredrich,2020)

Numerical setups

• Non-reflective outflow boundary conditions at chamber outlet (Yoo, 2005)

• Non-adiabatic combustion chamber walls

• Multiblock structured mesh ~2.7 million cells, including air plenum, swirler 

and combustion chamber — to resolve non-perfect mixing

• Mesh independent study done with the same geometry in previous work 

(Fredrich, 2020)

A view of the computational mesh.
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Chemical kinetics

• 15-step reduced mechanism based on GRI-Mech 3.0 (Lu, 2008) 

Selected operating conditions

• Operated at atmospheric pressure

• Thermal power: 23kw; equivalence ratio: 0.85

• Three hydrogen fuel fractions by volume: C1 - 0%, C2 - 20%, C3 - 40% 



Iso-thermal flow field 

Mean velocity fields and profiles at 4 downstream positions:
(a) axial mean velocity (b) radial mean velocity.

RMS velocity fields and profiles at 4 downstream positions:
(a) axial RMS velocity (b) radial RMS velocity.

EXP
LES 
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• LES reproduce the flow field of the non-reacting case with good agreement with measured conditions. 



Flame topology
Time averaged heat release rate (HRR)

C1
0% H2

Mean Heat release rate in 3 cases investigated (sliced)

Hydrogen addition results in 

• Higher heat release rate on average

• Shorter flame, closer to the combustor inlet

• More flash back, less lift off

C2
20% H2

C3
40% H2

0% H2 20% H2 40% H2

0% H2 20% H2 40% H2C1 0% H2

LES EXP

LES EXP

C3 40% H2

Mean heat release rate in LES (line of sight
integration) and OH chemiluminescence in EXP.
Only for qualitative comparison for flame topology.

Comparison of flame shape in LES and EXP

• Both V-shape flame (inner share layer stablised)

• LES predicts longer flame and smaller flame angle 
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Acoustic fluctuations 
Self-sustained limit cycle oscillations 

Pressure signals in air plenum (Pp) and combustion chamber (Pc) together with integrated heat release rate for C3
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PSD of P’, FFT of HRR compared to EXP

C3
40% H2

C1
0% H2

EXP peak p’ 

• EXP p’ with estimation of damping wall effect ~13dB (Lourier,2017) 

• First peak frequencies matches – Helmholtz f, thermoacoustic oscillations

• Over predicted amplitude: both in C1 (8dB) and C3 (20dB)

• Coupled peak f of p’ and HRR in C1 and C3 

unstable stable 

PSD of Pch
FFT of HRR 

310,145 390,143
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Conclusions and future work

• Relative to the coupling of flame and pressure fluctuations: not observed in isothermal case 

• Varies with operation conditions c

• The effect of damping walls on the acoustic remains unknown

Why so strong fluctuations?

Next Step Work

• Extend the computational domain

• Potential modeling of the vibrating walls

• Different operating conditions study

Conclusions

• Self-excited limit cycle oscillations can be successfully reproduced in this compressible LES method

• Effect of hydrogen addition on the flame topology is basically captured

• Strong pressure oscillations are found in all the cases investigated
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