Dispersion, evaporation and chemical kinetics of nanofuel sprays under external electrostatic fields

D. Fredrich, E. Kritikos, Z. Budhwani, E. Weiand and A. Giusti

Context and Motivation

- Premixed/Non-premixed
- Azimuthal flames
- MILD combustion
- Fuel flexibility
- Dual fuel (hydrogen)
- High-pressure ratio

Mixing between air/fuel

Electrification of the aircraft

- Integration
- Distribution
- More electrical
- Hybrid thermal/electrical
- > Fully electrical aircraft

Email: a.giusti@imperial.ac.uk (Presenter)

From: Osman et al., J. Ind. and Chem. Eng., vol. 67, 2018

Nanofuels

Shells of nanomaterials naturally forms during the drying process of a nanofluid

Context and Motivation

- Design of fluid
- Nanomaterial able to selforganize
- Control of pore size through EM
- Tailored properties for evaporation and combustion

UKCTRF Annual Meeting

Objectives

- I. What is the effect of electrostatic fields on the dispersion of clouds of nanofuel droplets?
 - Direct Numerical Simulations in HIT of a spherical cloud
- II. Can we control the location of the spray to change the mixing?
 - Large-Eddy Simulations of an electrospray in cross-flow
- III. Does the electrostatic field affect the kinetics of nanofuel combustion?
 - Molecular Dynamics of n-dodecane oxidation with iron nanoparticles

Dispersion of a cloud of nanofuel droplets

- Investigate the competing effects of drag and electrostatic forces on the dispersion of a cloud of droplets
- Identify effects on the turbulence spectrum
- Develop regime maps

Numerical approach

- Box of homogeneous and isotropic turbulence
- OpenFOAM, modified with electrostatic potential equation
- Two-way coupling, dilute spray

$$\frac{\mathrm{d}m_d}{\mathrm{d}t} = -\frac{\pi}{4}\rho_l d\ K\cdot\beta$$

 Table 2.
 Overview of non-dimensional parameters in droplet cloud dispersion simulations.

Parameter	Symbol	Value
No. of trials per config.	N_t	6
Droplet cloud radius	r_c/\mathcal{L}	1/8
Init. droplet vol. frac.	$\overline{\phi}_0$	10 ⁻⁵
Droplet diameter	d_0/\mathcal{L}	$4.143 \cdot 10^{-4}$
Density ratio	$ ho_l/ ho_g$	626.7
Droplet Stokes number	\mathbf{St}	0.100
Nondim. charge group	Π_q	-11813
Nondim. potential group	$\Pi_{\Delta \Phi}$	4.123
External pot. difference	$\Delta \Phi / \Delta \Phi_0$	0, 0.5, 1, 2

 Table 3.
 Droplet parameters for HIT simulations with evaporating nanofluid droplets.

Parameter	Symbol	Value
Initial diameter	d_0/\mathcal{L}	4.143·10 ⁻⁴
Density ratio	ρ_l/ρ_g	626.7
Droplet lifetime	τ_v/τ	0.035, 0.07, 0.14
Nanop. Péclet number	Pe	50, 200
Init. droplet Stokes num.	St	0.1
Init. nanop. vol. frac.	$\varphi_{p,0}$	0.0016
Nanop. radius	r_p/\mathcal{L}	$3.694 \cdot 10^{-6}$
Nanop. contact angle	θ	40°
External pot. diff.	$\Delta \Phi / \Delta \Phi_0$	0, 1, 2

Some results

Operating point

Plane average droplet volume fraction

Email: a.giusti@imperial.ac.uk (Presenter)

Email: a.giusti@imperial.ac.uk (Presenter)

Imperial College London

0.25

0.2

0.15

0.1

0.05

-0.05

-0.1

0

 $\frac{z}{\mathcal{L}}$

Some results

Location of the centre of mass \succ

0.25

0.2

0.15

0.1

0.05

-0.05

-0.1

0.6

0

9 2 > Force budget at t/Te = 0 and 0.35

0.2

t/T_e

0.4

14 September 2022

8

Electrospray in cross flow

- Modulate the trajectories of charged droplets in a bulk flow using external electrostatic fields.
- Increase the effective time available for droplet evaporation over a finitelength mixing region.
- Control the location of fuel vapour release a concept introduced here as 'targeted evaporation'.

Hypothetical configuration

- 'Electrospray in cross-flow'
- Air at atmospheric pressure
- Charged kerosene droplets w/ initial temperature of 300 K
- 3×10⁶ mesh points

Case	$T_{g,0}$ [K]	U_b [m/s]	$d_{0,i} \; [\mu \mathrm{m}]$	$u_{d,y,0}$ [m/s]	$ heta_d$ [°]	$E_{ m ext}/{E_{ m ref}}^{1}$	Orientation
Α	300	2, 20, 80	{5:95}	30	± 9	0, 0.1, 1	$\pm E_{\mathrm{ext},y}$
В	700	10	50	10	0	0, 2	$E_{\mathrm{ext},x}$

UKCTRF Annual Meeting

Numerical method

- Large eddy simulation (LES) with Eulerian-Lagrangian formulation
- Based on open-source CFD software package OpenFOAM
- Rapid mixing model¹ for droplet evaporation (secondary breakup neglected)
- Electrostatic forces computed in the Eulerian framework²
- Net charge of each droplet considered constant throughout lifetime³

¹Miller et al., International Journal of Multiphase Flow 24 (1998), 1025-1055. ²Weiand and Giusti, International Journal of Spray and Combustion Dynamics (2021), In review. ³Doyle et al., Journal of Colloid Science 19 (1964), 136-143.

UKCTRF Annual Meeting

Imperial College London

Case A – Droplet trajectories

- Symbols: droplet bin-averages
- Lines: 2D analytical model based on drag and electrostatic forces
- Setup: el. field in the negative vertical direction (top figure only)
- Conclusion: mean droplet
 trajectories affected by el. forces

Bulk velocity, U_b $d_i[\mu m]$ 80 2 m/s20 m/s $y \, [m]$ $SMD = 50 \ \mu m$ $E_{\text{ext},y}/E_{\text{ref}} = -1$ -0.050.050.1 0.150.20.250.30 x [m] 0.05Bulk velocity, U_b $d_i[\mu m]$ 80 2 m/s20 m/s $y \, [m]$ 40 $SMD = 50 \ \mu m$ $E_{\text{ext},y}/E_{\text{ref}}=0$ -0.050.050.1 0.20.250.30.15x [m]

0.05

Fredrich, Weiand, and Giusti, J. Multiphase Flow, submitted

Case B - 'Targeted evaporation'....5

- Localised fuel vapour release
- Repulsion forces promote droplet separation and dispersion
- Quicker evaporation (-30%) due to higher droplet *Re* number (increased relative velocity)

Fredrich, Weiand, and Giusti, J. Multiphase Flow, submitted

UKCTRF Annual Meeting

Email: a.giusti@imperial.ac.uk (Presenter)

Imperial College London

'Targeted evaporation'

- Enhanced mixing due to higher turbulence intensity in the continuous phase
- Smaller fuel vapour gradients downstream (more homogeneous mixture)

Fredrich, Weiand, and Giusti, J. Multiphase Flow, submitted

UKCTRF Annual Meeting

Chemical kinetics in nanofuel combustion

- The effect of electrostatic fields on combustion is mainly understood in terms of "ionic wind"
- Is there any direct effect on the chemistry?
 - Collision frequency: change of kinetic energy of ions and polarised molecules
 - Activation energy: change of the energy barriers
- Focus: local charge transfers due to close interactions

Configuration and numerical methods

- Study of molecular interactions at nanoscale level
- ReaxFF force fields (tuned from QM computations)
- Qeq and QTPIE charge equilibration methods
- NVT and NVE ensemble simulations
- Amorphous FeNP, diameter 4 nm
- Ambient conditions:
 - Temperature: 1600 2400 K
 - Initial pressure: 5 40 atm

Email: a.giusti@imperial.ac.uk (Presenter)

Kritikos and Giusti, Comb. Flame, 2022

Imperial College London

What is the effect of EF on n-dodecane combustion?

UKCTRF Annual Meeting

What is the effect of NP addition?

Kritikos and Giusti, Proc. Combust. Inst., 2023

Email: a.giusti@imperial.ac.uk (Presenter)

Email: a.giusti@imperial.ac.uk (Presenter)

Imperial College London

What is the effect of EF on NP combustion?

back max. 60 front 0.1 С 0 ave. 50Н 0 ₹ 2 1e-2 max. ave. ω max. 100 ave. back front 500 1000 1500 2000 3 2 0 9 3 time [ps] Shell thickness [Å] Shell thickness (top) and number of adsorbed atoms at 0.1 V/Å (bottom) at 31.7 kg/m³ and 1800 K (NVT ensemble)

Kritikos and Giusti, Proc. Combust. Inst., 2023

UKCTRF Annual Meeting 14 September 2022

Main takeaway

Interactions at the nanoscale level have the potential of opening up a wide range of new technologies to deliver tailored reacting flows

Acknowledgements

- This project is funded by the European Commission through the Clean Sky 2 Joint Undertaking under the European Union's Horizon 2020 Research and Innovation Program, project LEAFINNOX (Grant Agreement \#831804).
- The work is also supported by the UK Consortium on Turbulent Reacting Flow (UKCTRF) and uses the ARCHER UK National Supercomputing Service (<u>http://www.archer.ac.uk</u>).

UKCTRF Annual Meeting

14 September 2022

Any questions?

Email: a.giusti@imperial.ac.uk (Presenter)