

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology UK Consortium on Turbulent Reacting Flows Annual Meeting 2022 September 13-14 Newcastle University

Hydrogen and Ammonia Turbulent Premixed Combustion: Physical Characteristics and Computational Implications

Hong G. Im Professor in Mechanical Engineering Clean Combustion Research Center (CCRC) King Abdullah University of Science and Technology (KAUST)

Acknowledgments

KAUST Supercomputing Laboratory

Computational Reacting Flows Laboratory (CRFL) Personnel (25 members, 14 countries)

Hong G. Im Principal Investigator

Postdocs

Minh Bau Luong

Mohammad Rafi Malik

Jiabo Zhang

M.S. Students

Urbano Medina Martinez

Iliana Dimitrova

Francisco Hernández Pérez **Research Scientist**

Ph.D. Students

Sangeeth Sanal Erica Quadarella Alberto Ceschin

Moaz Lehaibi

Restrepo Cano

Menaca Cabrera

Mickael Silva

Junjun Guo **Research Scientist**

Wonsik Song Now at NTNU

Ruslan Khamedov

Abdelwahid

Vijayarangan Vijayamanikandan

Xiao Shao

Angelilli

Abdullah Zaihi Kevin Moreno Cabezas

Po-Han Chen

Predictive Simulations of Multi-scale Combustion

DLR flame

Towards Green Energy...

Bloop Middle East B		J							
• Live Now	Markets	Technology	Politics	Wealth	Pursuits	Opinion	Businessweek	Equality	Green
Green Climate Politics		EU Lab • Parli • Regi	Lawn el Ga ament v ulation w	make as, N otes to vill most	ers Ro uclea approve likely en	emov ar as includin iter into	/e Last Green g gas in taxc force at star	Hurc onomy t of 2023	lle to
		By <u>John</u> July 6, 2 <i>GMT+3</i>	Ainger 2022 at 1:2	1 PM GMI	C+3 Update	ed on July (6, 2022 at 1:56 l	PM	• LIVE ON BLC Watch Live T Listen to Live
Listen to this ► 3:06	article	Europe energy	an Union I to be <u>labe</u>	lawmaker led as gre	s voted to en investn	allow natu	iral gas and nuc oving the last n	clear najor	
Share this ar	ticle n 🛯 🖘	environ	to potenti mental in	vestors.	ns of euros	s of fundin	g from		
Follow the au <u>@johnainger</u> + Get alerts t John Ainger	uthors	Parliam of gas a of econ climate states, i	ent fell sh nd nuclea omic activ neutrality t now mea	ort of the r technole ities deer v. Barring ans the re	353 votes ogy in the ned in line an unlikely gulation w	needed to EU's so-ca with the l y objection vill start at	reject the inclu lled Taxonomy bloc's transition n from member the beginning of	usion , a list n to of next	
In this article)	year.							

Fit for 55: how the EU will turn climate goals into law

Stefan Siegemund, dena, "The potential of electricity-based fuels for low-emission transport in the EU" (2017)⁶

CCRC Research Forecast

- Drive to decarbonize economy will accelerate
- Cost of energy production from renewables is no longer the barrier
- Combustion will remain a relevant science and technology

Focus research efforts on:

- Sectors that are difficult to decarbonize
 - Heavy duty trucks, marine, aviation, off-grid
 - Cement, mining, smelting
- Energy storage, transportation, utilization
- Employ AI & ML, more diagnostics, better mechanisms, etc. to further fundamental understanding of combustion phenomena

CCRC's New Research Areas

- e-Fuels (hydrogen, ammonia, formic acid, methanol, etc.)
- Marine transportation
- Cryogenic carbon capture (CCC)
- Concentrated solar power (CSP) and integration of renewables
- Fuel cells, hydrogen production

Turbulent Hydrogen/Ammonia Premixed Flames at Atmospheric and Elevated Pressure

Contributions by Francisco Hernandez Perez Wonsik Song Ruslan Khamedov

Introduction and motivation

- Hydrogen (H₂) and ammonia (NH₃) have attracted research interests in recent years as viable e-fuels towards carbon-neutral power and transportation
- Despite the simplicity in oxidation pathways, combustion of these fuels involves pronounced effects of fast-diffusing major and intermediate species, leading to interesting flame dynamics in turbulent and high pressure conditions
- Key science/engineering questions:
 - ✓ Flame stability (ammonia)
 - ✓ Flashback (hydrogen)
 - ✓ Differential diffusion effects
 - ✓ NOx

Numerical methods and solver

KARFS (KAUST Adaptive Reacting Flow Solver)

- Fully compressible Navier-Stokes, energy, and species equations
- 8th order central difference scheme for spatial discretization
- 4th order explicit Runge-Kutta method for time integration
- 10th order filter
- Nonreflecting NSCBC (Navier-stokes Characteristic Boundary Conditions)
- Homogeneous isotropic turbulent field by the energy spectrum

Reaction mechanism by Burke et al. (9 species and 23 reactions)

Turbulent forcing

۲

- **Energy spectrum function** ٠ (Passot and Pouquet (1987) J. Fluid Mech.)
- Turbulent forcing scheme (Bassenne et al. (2016) Phys. Fluids)

$$E(k) = \frac{u'^2}{k_0} \sqrt{\frac{2}{\pi}} \times \left(\frac{k}{k_0}\right)^4 \times \exp\left(\frac{-2k^2}{k_0^2}\right)$$
$$A(t) = \frac{\epsilon(t) - G[k(t) - k_\infty]/k_{l,\infty}}{2k(t)}$$

A(t) =

Conditions for various cases

• Borghi diagram

Case	Ι _Τ / <i>δ</i> [[-]	u′/S _L [-]	Re [-]	Da [-]	Ka [-]	<i>δ</i> [/Δx [-]	Grid [M]	Cost [Mh]
F1	5.65	5	686	1.13	23	17.7	250	6.1
F2	0.82	35	700	0.02	1126	136.2	516	6.3
F3	0.86	2.6	55	0.44	22	17.7	1.3	0.03
F4	0.12	18.3	52	0.01	1126	136.2	15.6	0.39
F5	0.83	5	101	0.17	60	30.8	8.2	0.14
F4′	0.29	18.3	131	0.02	722	131	6.3	0.25

Flame speed definitions

- Turbulent flame speed
 - Fuel consumption speed (global quantity)

$$S_T = \frac{1}{\rho_u(Y_{b,F} - Y_{u,F})A_0} \int_V \omega_F dV$$

Poinsot et al. (1992) CST

Density-weighted displacement speed (local quantity)

$$S_d^* = \frac{\rho S_d}{\rho_u} = \frac{1}{\rho \nabla Y_k} [\dot{\omega}_k - \nabla \cdot \mathbf{J}_k] \qquad \text{Im and Chen (1999) CNF}$$

Integral length scale as key parameter

- Mean stretch factor, mean flame surface area, and mean turbulent flame speed

• For a wide range of l_T and u', \overline{S}_T is correlated well with l_T

Flame structure

 $\overline{Y}_i/\overline{Y}_{i,Lmax}, \overline{T}/\overline{T}_{Lmax}$: cross-sectional avg. of multiple time steps Lmax: maximum value at the reference laminar flame

• Cross-sectional averages of temperature and species mass fractions (major)

Conditions to study high pressure effects

• Borghi diagram

10 ³	E	* $\delta_{\rm L} = v / S_{\rm L}$ is assumed	P1 =	1 atm,	P3 and	P3': 3	atm,		$\Delta x < m$	in(2 η, δ_I	_ /10)
	Distribued Re	Broken	Case	$I_{\rm T}/\delta_{\rm L}$ [-]	u'/S _L [-]	Re [-]	Da [-]	Ka [-]	Δx [µm]	Grid [M]	Cost [Mh]
		reaction zones	P1	1.2	3	86.8	0.4	23.3	30.1	1.1	0.005
10 ²	Ka	=100	P3′	1.2	3	58.6	0.4	19.1	10	0.79	0.003
		Thin reaction zones	P5′	1.2	3	48.7	0.4	17.4	6	0.79	0.003
Ĺ			P7′	1.2	3	43.3	0.4	16.5	4.56	0.65	0.006
$\frac{5}{2}$ 10 ¹		Kall							i		
1	P3 P5 P7		Case	$I_{\rm T}/\delta_{\rm L}$ [-]	u′/S _L [-]	Re [-]	Da [-]	Ka [-]	Δx [µm]	Grid [M]	Cost [Mh]
	P1	flamelets -	P1	1.2	3	86.8	0.4	23.3	30.1	1.1	0.008
10 ⁰	(P3',P5',P7')		P3	4.185	3	204.2	1.395	10.2	10	30.2	0.697
	and the second sec		P5	6.958	3	282.4	2.319	7.2	6.13	130.8	2.178
		flamelets	P7	9.374	3	338.6	3.125	5.9	4.56	331.7	7.015
10 ⁻¹ 10	10^{-1} 10^{0} 10^{1}	10^2 10^3		* I _T is	identica	l for P	P1, P3,	P5, ai	nd P7		
	$l_{ m T}$ / $\delta_{ m L}$										

Evolution of temperature and HRR

• For fixed l_T (= 0.428 mm) at a wide range of pressure

Turbulent flame speed, surface area, and integrated HRR

Temporal evolution of $S_T/S_L, \omega_{T,V}/\omega_{T,V0}$, and A_T/A_L

- Chemical effects are pronounced at elevated pressure (reversed trends of S_T/S_L vs. $\omega_{T,V}/\omega_{T,V0}$)
- Volumetric effects (larger HRR for larger domain size)

Displacement speed and curvature distribution

• Probability density functions (PDF) of flame curvature and local displacement speed

- Clear trend of curvature shifting to positive side as pressure increases
- S_d^* also augments at elevated pressure

Dependence of global quantities on pressure

• Mean stretch factor, mean flame surface area, and mean turbulent flame speed

- For the same u'/S_L and l_T/δ_L , S_T/S_L is found to be about the same even at pressure of 5 atm • Eurther enhancement of S_L/S_L for PZ'
- Further enhancement of S_T/S_L for P7'

Hydrogen, ammonia lean/rich comparison

• Borghi diagram

Case	Ι _Τ / <i>δ</i> ί [-]	u'/S _L [-]	Re [-]	Da [-]	Ka [-]	<i>δ</i> լ/Δx [-]	Grid [M]
H2	1	10	78	0.1	88	12	0.79
AL	1	10	56	0.1	75	12	0.69
AR	1	10	72	0.1	85	12	1.7

H2: H₂/air premixed flame $\varphi = 0.41, T = 300 \text{ K} (S_{L} = 0.211 \text{ m/s}), Le = 0.36$

AL (lean ammonia): NH₃/air premixed flame $\varphi = 0.81$, T = 600 K ($S_L = 0.211$ m/s), Le = 0.90

AR (rich ammonia): NH₃/air premixed flame $\varphi = 1.2$, T = 500 K ($S_L = 0.211$ m/s), Le = 1.12

23

Turbulent flame speed variation

$$S_T = \frac{1}{\rho_u A_0 (Y_{u,F} - Y_{b,F} A_0)} \int_V \omega_F dV$$

Poinsot et al. (1992) CST

• Temporal evolution of S_T/S_L and A_T/A_L

- Large stretch factor for H2 but close to unity for AL and AR
- Despite the same l_T/δ_L and u'/S_L , A_T/A_L and thereby S_T/S_L are very different
- AR has significant reduction of surface area as compared to the lean flame (AL)

Conditional average of heat release rate

• Conditional averages of HRR overlaid with laminar counterpart in progress variable space (c)

HRR for turbulent H2 flame:
1) peak lies more upstream
2) small bump upstream
3) larger HRR peak

- HRR for turbulent ammonia flames:
 - 1) peaks lies more downstream
 - 2) AL shows higher peak
 - 3) AR shows broader HRR

Turbulent kinetic energy, temperature and HRR

• Cross-sectional averages of the turbulent kinetic energy, temperature, and HRR

 $u'_i = u_i - \bar{u}_i$ where \bar{u}_i is cross-sectional mean for *i*-direction $k = 0.5 \times (u'^2 + v'^2 + w'^2)$

- Even for the same S_L and u', TKE for H2 is larger
- Higher degree of thermal-diffusive instability seems to enhance turbulence (TKE)
- Turbulence decays more rapidly for the ammonia flames

Stretch factor of lean and rich ammonia flame

• Mean displacement speed (S_d^*) and stretch (K) along the iso-surfaces of $c_{Y_{H2O}}$

- For the rich ammonia flame, the mean stretch is positive in the preheated zone and negative in the intense reaction zone
- The decrease of S_d is a result of stretch, which is responsible for the lower values of $\frac{S_T}{S_L}$ compared to $\frac{\overline{A_T}}{A_L}$ for

the rich ammonia flame
$$\dots > \frac{S_T}{S_L} = \frac{\overline{A_T S_d}}{A_L S_L} \approx (1 - \frac{L \overline{K}}{S_L}) \frac{\overline{A_T}}{A_L}$$

• For rich ammonia flame (Le > 1), the Markstein number is positive

Effects of turbulence on rich ammonia flames

Borghi diagram

Turbulent cases

- A1 vs. A2: same l_T/δ_L (= 1.0)
- A3 vs. A4 vs. A5: same l_T / δ_L (= 3.5)
- A1 vs. A4: same u'/S_L (= 10)
- A1 vs. A3: same Ka (= 85)
- A2 vs. A5: same Ka (= 30)

- Only rich ammonia/air flame is considered: NH₃/air premixed flame $\varphi = 1.2$, T = 500 K ($S_L = 0.211$ m/s)
- The effect of different turbulent conditions is analyzed

Case	<i>Ι_Τ/δ</i> ι [-]	u'/S _L [-]	Re [-]	Da [-]	Ka [-]	<i>δ</i> _L /Δx [-]	Grid [M]
A1	1	10	72	0.1	85	12	1.7
A2	1	5	36	0.2	30	12	1.7
A3	3.5	15.2	386	0.2	85	12	16.6
A4	3.5	10	254	0.4	45	11	11.7
A5	3.5	7.6	192	0.5	30	11	11.6

Unsteady evolution of temperature and HRR fields									
	A1	A2	A3	A4	A5				
l_T/δ_L	1.0	1.0	3.5	3.5	3.5				
u'/S_L	10	5	15.2	10	7.6				
Ка	85	30	85	45	30				

Turbulent flame speed

Poinsot et al. (1992) CST

• Temporal evolution of S_T/S_L and A_T/A_L

- The mean of the turbulent flame speed is increased with the higher l_T/δ_L
- Less than unity stretch factor is observed regardless of the turbulent conditions
- The stretch factor for high l_T/δ_L flames is decreasing, i.e. the gap between flame area and flame speed enhancement becomes larger

Summary

- The turbulent flame speed displays a strong correlation with l_T/δ_L , the size of the most energetic turbulent eddies.
- Compared to hydrogen flames, turbulence effect is attenuated for ammonia flames due to the different heat release locations.
- The flame stretch factor $(\bar{I}_0 = (\bar{S}_T/S_L)/(\bar{A}_T/A_L))$ changes sign from positive to negative for lean and rich ammonia flames.
- For the rich ammonia flames, the PDF of S_d^* peaks at a value smaller than the one from the 1D laminar flame, and flames have mostly negative curvature.

Accelerating Turbulent Reacting Flow Simulations on Many-core/GPUs Using ML and CSP

In collaboration with University of Rome Sapienza (M. Valorani) University of Michigan (V. Raman)

KARFS – Performance portable

KARFS: KAUST Adaptive Reactive Flow Solver

- Implementation: C++
- Kokkos library: on-node parallelization
- MPI+X (X: Cuda, OpenMP, etc.)
- **Spatial discretization**: WENO7M or CD8
- **Time integration**: RK4 6 stages, explicit

Replace

Species source term ($\dot{\omega}_k$): Cantera (CPU-based)

Sequential: per cell computation

with

Species source term ($\dot{\omega}_k$): GPU-based

Matrix-based: wweep over all cells

Impact of GPU chemistry on KARFS DNS solver?

Methodology: matrix multiplication for rates

Matrices of rate parameters in log space

Performance assessment

Chemistry (source term) only compute time comparison: CPU (Cantera) vs GPU (UMChemGPU)

- GPU node: Intel(R) Xeon(R) CPU E5-2699 v3, 230 GB node memory, and 16 GB memory per GPU and one P100 (Pascal)
 GPU
- Chemistry: H2-air (NS=9 & NR=23) Burke et al.
- Min **10X** faster source term for 10³ grid block size (on GPU)
- Max O~10³ speedup for 100³ grid size
 - Significant faster (O~10³) source term computation with GPU chemistry
 - What about overall performance gain??

1. MPI+OpenMP (CPU parallel) DNS code

Time overall speedup: Convection+diffusion+time integration+dealiasing filter (except I/O)

- **Chemistry**: H₂-air (NS=9 & NR=23) Burke et al.
- Up to O(10³⁾ source term Speedup
- Maximum 18% gain in overall speedup
- **Reason**: data copy time between host-to-device (T, P, ρ, Y_k) and device-to-host (Ω) memory spaces
- Solution: compile DNS code for GPUs (MPI+CUDA)

CPU/GPU Memory spaces

- Memory spaces of CPU and GPU differ
- DNS code MPI+OpenMP: data copy (host-to-device & device-to-host) required
- DNS code **MPI+Cuda**: data copy (host-to-device & device-to-host) **NOT** required

Data copy across memory spaces is important

2. MPI+CUDA (GPU parallel) DNS code

Chemistry: H₂-air (NS=9 & NR=23) Burke et al

- DNS solver: MPI+CUDA
- Time per step: transport + time integration + dealiasing filer (except I/O)
- 1 MPI + 1 CUDA (Time integration + transport + filter + Chemistry)

MPI+CUDA+Cantera vs. MPI+CUDA+GPU Chemistry

- 3.5X overall speedup using GPU chemistry (100³ cells)
- Matrix-based formulation of chemistry & cuBLAS
- Efficient utilization of GPU
- Minimal data copy time

Roofline model: GPU chemistry

- Poor GPU utilization for **10³ cells** → Overall **poor** performance
- Effective GPU utilization for 100³ cells → Max performance gain

DAXPY: z = a * x + y2FLOPs: 1 add, 1 mult. 2 read (x, y) & 1 write (z) = 8*3 = 24 bytes X-axis: AI = 2/24 = 0.0833

Computational Singular Perturbation (CSP)

• **CSP** – Automated computational algorithm to decompose characteristic time scales of a dynamical system.

CSP form of the system:

Lam and Goussis, 1989

Original form of the system:

For species and energy equations

z: statevectors (T and Y_i) Mode timescales: $\tau_1 < \cdots < \tau_M \ll \tau_{M+1} < \cdots < \tau_N$ **q**: chemical source term **Slow subspace Fast subspace** $\frac{d\boldsymbol{z}}{dt} \approx \sum_{s=M+1}^{N+1} \boldsymbol{a}_s f^s = \left(\sum_{s=M+1}^{N+1} \boldsymbol{a}_s \boldsymbol{b}^s\right) \boldsymbol{g} = P \boldsymbol{g}$ **a**_n: CSP column basis vector of the *n*-th mode $f^i = \boldsymbol{b}^i \cdot \boldsymbol{g},$ (approx. right eigenvector of the Jacobian of **g**) $f^r \approx 0$ $r = 1, \ldots, M$ $\mathbf{b}^i \cdot \mathbf{a}_j = \delta^i_j$ **b**^{*n*}: CSP row basis vector of the *n*-th mode $M(\boldsymbol{z}^{\mathcal{M}})$ (approx. left eigenvector of the Jacobian of **g**) $\boldsymbol{z}(t_{n+1}) = \boldsymbol{z}^* - \sum_{r=1}^{n} \boldsymbol{a}_r(\hat{\boldsymbol{z}}) f^r(\hat{\boldsymbol{z}}, \boldsymbol{z}^*) \tau^r(\hat{\boldsymbol{z}})$ *f*^{*n*}: amplitude of the *n*-th mode δ_i^i : Kronecker delta 41 **Radical correction**

CSP solver algorithm

1) Compute CSP basis

2) "radical" correction to apply fast scales (and get back onto manifold)

3) Compute # of exhausted modes (M)

4) Build CSP Projection Matrix

5) explicit integration of slow modes

6) "radical" correction to apply fast scales (and get back onto manifold)

$$J(\mathbf{g}(\mathbf{y}))\mathbf{a}_{k} = \lambda_{k} \mathbf{a}_{k}^{\text{(eigensystem of the Jacobian)}}$$

$$\mathbf{y}^{\mathcal{M}}(t) = \mathbf{y}(t) - \sum_{r=1}^{M} \mathbf{a}_{r} f^{r} \tau^{r}$$

$$\vec{g} = \sum_{k=1,2,\dots,M}^{\text{(s)}} f^{k} \vec{\mathbf{a}}_{k} + \sum_{k=M+1,M+2,\dots,N} f^{k} \vec{\mathbf{a}}_{k}$$

$$P(t) = I - \sum_{r=1}^{M} \mathbf{a}_{r} b^{r}$$

$$y(t_{n})$$

$$(s) = I - \sum_{r=1}^{M} \mathbf{a}_{r} b^{r}$$

$$y(t_{n})$$

$$(s) = I - \sum_{r=1}^{M} \mathbf{a}_{r} f^{r} = P \cdot \vec{g}(\mathbf{y}^{\mathcal{M}})$$

$$(s) = I - \sum_{r=1}^{M} \mathbf{a}_{r} f^{r} = P \cdot \vec{g}(\mathbf{y}^{\mathcal{M}})$$

$$y(t_{n})$$

$$y(t_{n}$$

42

CSP solver algorithm

Solver accuracy

Summary

A significant speed-up was achieved by

- Matrix-based chemical source term evaluation on GPU
- MPI+CUDA with minimal memory copy

An intrusive ANN approach to accelerate the CSP solver

- The construction is robust to errors in basis prediction by ANN
- Integration accuracy is comparable to CVODE
- Slight performance improvements with a small mechanism (9-species)
- Larger savings are expected with larger mech and PDEs

