Direct Numerical Simulations of Turbulent Stratified Jet Flames

Peter Brearley Umair Ahmed Nilanjan Chakraborty p.brearley@newcastle.ac.uk

UKCTRF Conference 13th-14th September 2022

Turbulent stratified mixture combustion

- A limited mixing time is allowed between the unburned reactants such that some premixing takes place but not to the extent of homogeneity.
- > Variation in equivalence ratio ϕ across the flame.
- It allows leaner overall mixtures to be used, reducing the burned gas temperature and NO_x emissions.

Turbulent slot jet flames

- Direct numerical simulations of a turbulent slot jet flames have been simulated.
- Jet flames are more representative of flames encountered in industrial combustors.
- Cases vary with the alignment of the reaction progress variable gradient with the equivalence ratio gradient, ∇c · ∇φ, following the methodology of Richardson & Chen.¹

¹Richardson & Chen (2017). Analysis of turbulent flame propagation in equivalence ratio stratified flow, *Proc. Combust. Inst.* **36**, pp. 1729–1736.

Back-supported flame

- The mean gradients of equivalence ratio and reaction progress variable are aligned.
- Initially $\nabla c \cdot \nabla \phi > 0$.
- $\phi_{\rm coflow} = 1$ and $\phi_{\rm jet} = 0.6$
- The flame is propagating into an increasingly lean fuel-air mixture.

- Front-supported flame
- The mean gradients of equivalence ratio and reaction progress variable are opposed.
- Initially $\nabla c \cdot \nabla \phi < 0$.
- $\phi_{\text{coflow}} = 0.6$ and $\phi_{\text{jet}} = 1$
- The flame is propagating into an increasingly rich fuel-air mixture.

Simulation configuration

Misaligned scalar gradients

- The mean gradients of equivalence ratio and reaction progress variable are perpendicular.
- Initially $\nabla c \cdot \nabla \phi = 0.$
- $-\phi_{\rm jet} = 0.6$ to 1 and $\phi_{\rm coflow} = 0.8$.
- The flame is propagating through a range of equivalence ratio values simultaneously in the z direction.

- Premixed flame
- Reference case
- The flame is propagating through a constant equivalence ratio mixture.

-
$$\phi = 0.8$$
 everywhere, so $\nabla \phi = 0$.

Simulation configuration

- Code used is SENGA+, where the governing equations are solved using a 10th-order finite difference scheme, reducing to 2nd-order and one-sided at non-periodic boundaries.
- Turbulent inflow scans through fully-developed channel flow data.
- Partially non-reflecting outflow specified according to the Navier-Stokes characteristic boundary conditions technique (NSCBC).
- ▶ Periodic in the y-z directions.

Thermochemistry

$$k_j = A_j \hat{T}^{\beta_j} \exp\left(\frac{-E_{a,j}}{R\hat{T}}\right)$$

- A two-step chemical mechanism has been used representative of methane-air combustion has been used.²
- ► 5 species solved are CH₄, O₂, CO, CO₂, H₂O.
- A pre-exponential adjustment has been applied applied to rich mixtures.
- It has a low computational cost and ability to accurately estimate the laminar burning velocity across the whole flammability range.

 $^2 Westbrook \& Dryer (1981). Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames.$ *Combust. Sci. Technol.***27**.

Peter Brearley (Newcastle University)

UKCTRF Conference

Non-reacting flow validation

► The jet half-width (δ_u, δ_ϕ) is the distance from the centreline to the value halfway between the centreline and coflow values.

 3 Turquand d'Auzay & Chakraborty (2021). The localised forced ignition and early stages of flame development in a turbulent planar jet. *Proc. Combust. Inst.* **38**.

Peter Brearley (Newcastle University)

UKCTRF Conference

Simulation parameters

Config	$rac{U_{ ext{jet}}}{S_{L\langle \phi angle}}$	$rac{oldsymbol{U}_{jet}}{oldsymbol{U}_{coflow}}$	$rac{h}{\delta_{th}}$	$Re_{\sf jet}$	L/h	Grid size
back- supported	59.1	10	3.0	650	19×37×4.3	990×1920×225
front- supported	59.1	10	3.0	650	19×37×4.3	$990 \times 1920 \times 225$
misaligned gradients	59.1	10	3.0	650	19×37×4.3	$990 \times 1920 \times 225$
premixed	59.1	10	3.0	650	$19 \times 37 \times 4.3$	990×1920×225
$Re_{jet} = \rho_0 U_{jet} h/\mu$ CUs/flowthrough/case: 25,000						

Averaged quantities

Coloured contours of the reaction progress variable c with the equivalence ratio φ contours superimposed.

Flame height and mixture composition

- The equivalence ratio configuration has a large effect on the flame height.
- The average mixture composition within the flame as a function of height supports the observations.
- Encountering richer mixtures upstream with higher levels of turbulence results in a faster burning rate and a shorter flame, and vice versa.

 $\langle \phi \rangle_f$ is flame-averaged ϕ

 Variation of the mean equivalence ratio and its PDF within the flame with distance from the inlet.

Evolution of the species mass

Evolution of the species mass in the domain as a function of height y.

 ϕ varies from lean to stoichiometric, so the mass of CH₄ goes to zero, and O₂ approaches a non-zero value depending on the burned gas $\phi.$

 $m_{\rm CO}$ is the highest in the front-supported case where ϕ and A_T are the highest, then sharply drops to zero because of the lean ϕ in the burned gas.

Flame surface area and burning rate

- The mixture composition has a significant effect on the area of the flame.
 - Flame-turbulence interaction increases the flame area of the front-supported case when it is encountering the richer mixture, causing the burning rate to increase significantly.

Peter Brearley (Newcastle University)

Displacement speed and burning intensity

- The displacement speeds correlate with the local φ value, and tends to increase with distance from the inlet regardless of φ as the local Reynolds number increases.
- A burning intensity value of 1 indicates that Damköhler's first hypothesis is valid.
- The burning intensity remains at 1 near the inlet but diverges towards the flame tip because of increased curvature.⁴

back-supported
 front-supported
 misaligned gradients
 premixed

$$S_{d} = \frac{\dot{\omega}_{c} + \nabla \cdot (\rho D \nabla c) + A_{\xi}}{\rho |\nabla c|}$$
$$I = \frac{\int_{V} \dot{\omega}_{c} \, dV}{\rho_{0} \int_{V} S_{L}(\phi) |\nabla c| \, dV}$$

⁴Chakraborty et al. (2018). On the validity of Damköhler's first hypothesis in turbulent Bunsen burner flames: A computational analysis. *Proc. Combust. Inst.*

Peter Brearley (Newcastle University)

18 / 20

$$\mathsf{HR}_{\mathsf{total}} = \int_V H_\phi |\dot{\omega}_F| \, dV$$

- Percentage of the heat release rate arising from the back-supported burning mode.
- Turbulent mixing can alter the mode despite the scalar gradient initialisation.
- ► The front- and back-supported cases mostly remain as initialised.
- The case with misaligned scalar gradients remains with a 50:50 split while both the richer and leaner mixtures are present.
- As the richer mixture burns away, mostly becomes back-supported.

19 / 20

- Turbulent stratified slot-jets with varying equivalence ratio gradients relative to the reaction progress variable gradient have been simulated.
- Various fundamental flame statistics have been analysed which aid the understanding of flame propagation through equivalence ratio statified mixtures.
- Understanding how the flame interacts with the turbulent stratified mixture is essential to model stratified combustion effectively.

Acknowledgements

We are grateful to ARCHER2 and Rocket HPC services for computational support, and to EPSRC for financial support.