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Motivation .

4

» Flame-wall interaction (FWI) occurs in many
flows of engineering interest (e.g., Spark Ignition
(SI) engines and gas turbines), and modelling of
these events

L)

D)

% The turbulence structure is altered by the :
and the interaction of flame elements with walls
leads to of the underlying
combustion process.

2 Spatial and temporal fluctuations of wall
temperature induce thermal stresses and strongly
affect combustor lifetimes.

ORI % FWI is increasingly becoming important as new

smeneereenlll | LIrDUleNce combustors are being made smaller to increase

and strain flamelets energy density and reduce weight (e.g. hybrid
engines, micro-combustors).
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Objectives

“ Wall heat flux and flame quenching statistics have been analysed using 3D DNS data for
the of a VV-shaped premixed flame in a turbulent channel flow

*» To analyse Induced by non-unity Lewis number (Lep =
a;/D + 1), the simulations have been conducted for three different fuel Lewis numbers
ranging from 0.6to 1.4 (i.e. Ler = 0.6,1.0 and 1.4)

“ To analyse the effects of and the flame orientation on
the wall heat flux and flame quenching distance
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Direct Numerical Simulation

A well-known three-dimensional compressible DNS code SENGA+! is used.

The code solves conservation equations for mass, momentum, energy and chemical species
using finite difference method.

The spatial derivatives are evaluated via a for internal
points and gradually decreasing to at the non-periodic boundaries.

A Runge-Kutta (3rd order explicit) scheme for time advancement.

Single step chemistry representing the stoichiometric fuel-air mixture is considered for the
computational economy.

The wall temperature is set to that of the non-reacting air-fuel mixture.
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Wall heat flux and quenching distance

¢ The wall heat transfer and flame quenching in FWI are characterised in terms of normalised
wall heat flux @,, and Pectlet number Pe

Dy, = |qwl/[PoCpoSL(Taa — To)] and Pe =y /6,

qw wall heat flux

Po unburned gas density T, unburned gas temperature

Cpo unburned gas specific heat T4 adiabatic flame temperature
y wall normal distance

¢ The minimum value of the Peclet number provides the measure of the flame quenching
distance & in the following manner

Pepin = 60/8,| 0" = 0.75

Non-dimensional temperature 8 = (T — Ty)/(Tgq — To)
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Lewis Number and Flame Curvature

s The Lewis number (Le) is a dimensionless number defined as the

Le = a;/D=A/pC,D

where a; Is the thermal diffusivity and D is the mass diffusivity and A is the thermal conductivity

s The flame curvature k,, can be defined as

_OsaNl-
Ky = 0. o,

where N; = —(dc/0dx;)/|Vc| is the it" component of flame normal.

According to the convention used in this work, the flame surface elements, which are convex (concave) to the

reactants, have positive (negative) curvature values.
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Partially non
—reflecting

Turbulent outflow

Channel inlet _ [ewan Re, =
T p ) [1

< V-flame is investigated in this work with friction velocity based Reynolds number Re, = 110 in
channel flow configuration with inert walls for three different fuel Lewis numbers .

*» Domain size of 22.22h X 2h X 4h discretised on 4000 x 360 x 720 (approx. 1.0 billion) grid points.

 The simulation is run for two flow through times after the initial transients have decayed.

<+ Progress variable is defined in terms of the fuel mass fraction, ¢ = (Ypy,—Yr)/(Yry—Yrp).

Fuel Composition
25%H, and 75% CH,

90%C,Hg and 10% CH, Newcastle
IF. Dinkelacker, B. Manickam, S.P.R. Muppala, Modelling and simulation of lean premixed turbulent Un]‘verSlty

CH4/h2/air flames with an effective Lewis number approach, Combust. Flame,158 (9), 2011, 1742-1749,
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Fields of Favre-averaged temperature 8 along with mean
Lep = 1.4 reaction progress variable contour ¢ = 0.1,0.5 and 0. 8.

Isosurfaces of ¢ = 0.5 with distributions of normalised vorticity
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Flame wall interaction
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Variations of turbulent flame surface area A f
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A; 1s the flame surface area in the laminar V-shaped flames
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Variations of the minimum Peclet number Pe,,,;,, and
the maximum magnitudes of wall heat flux @, .4«
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Lewis number effects
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Instantaneous and mean distributions of
normalised wall heat flux magnitude @,
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Joint PDF distribution of Wall shear stress and wall heat flux iz Newcastle
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Probabilities of coherent structure
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Effect of coherent structure on @,
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Flame Orientation
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Effect of flame orientation on @,
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Summary

* The effects of fuel Lewis number Leg on the statistical behaviour of wall
have been analysed for OWI of turbulent VV-shaped flame with Ley ranging from

0.6 to 1.4.

“ Maximum wall heat flux magnitude increases with decreasing Ler whereas the flame quenching
distance decreases with decreasing Ler In turbulent OWI case but just the opposite trend was
observed for laminar OWI and HOI cases.

“ Greater extent of flame wrinkling for smaller values of Le alters the proportions of flame surface
area as well as local head-on and entrained flame quenching events.

¢ The effects of fuel Lewis number on within turbulent boundary layers affect both
wall heat transfer rate and flame quenching distance.

% Therefore, the thermo-diffusive effects arising from the non-unity Lewis number need to be
accounted for accurate modelling of wall heat transfer during FWI in turbulent boundary layers.
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Non-reacting flow simulation
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 Re. = 110 for the non-reacting channel.
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Non-reacting channel flow mean velocity and Reynolds stress profiles

"DNS data of Abe et al is available at http://www.rs.tus.ac.jp/~t2lab/db/index.html



Probabllltles of coherent structure

z/h =12 1 z/h =14 . z/h = 16
0.757 0.75 } 0.75 }
B Outward interactions| - -
B Ejection :§ :-af =
[0 Inward interactions |5 0.5 1S 05 _% 0.5
B Sweep S S <
¥ = -y
' 0.257 0.25} 0.25}
U;
0 0 0
o 0.6 1.0 14 0.6 1.0 1.4 0.6 1.0 1.4
Ejection|Outward  Ler | Ler | o Ler
1 Probabilities of occurrences of different coherent structures in the region given by distance Pe >
y/&8, = 0 where Pe is the normalised wall normal distance Pe = y/é§, of the 8* = 0.75
isosurface
Inward u1 Products
inter. § Sweep g« _ (.75 Wall Newcastle

Poactants - + University

DN N Y Y N W N NN N N N N




Flame Orientation
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