Effects of fuel Lewis number on wall heat transfer during oblique flame-wall interaction of premixed flames within turbulent boundary layers

UKCTRF annual meeting September 2022

Sanjeev Kumar Ghai*, Umair Ahmed, Nilanjan Chakraborty

School of Engineering, Newcastle University, Claremont Road, Newcastle Upon Tyne, NE1 7RU, UK *Email : <u>Sanjeev.Ghai@newcastle.ac.uk</u>

Motivation

- Flame-wall interaction (FWI) occurs in many flows of engineering interest (e.g., Spark Ignition (SI) engines and gas turbines), and modelling of these events remains challenging.
- The turbulence structure is altered by the walls, and the interaction of flame elements with walls leads to modifications of the underlying combustion process.
- Spatial and temporal fluctuations of wall temperature induce thermal stresses and strongly affect combustor lifetimes.
- FWI is increasingly becoming important as new combustors are being made smaller to increase energy density and reduce weight (e.g. hybrid engines, micro-combustors).

Objectives

Wall heat flux and flame quenching statistics have been analysed using 3D DNS data for the oblique-wall quenching of a V-shaped premixed flame in a turbulent channel flow

* To analyse the thermo-diffusive effects induced by non-unity Lewis number ($Le_F = \alpha_t/D \neq 1$), the simulations have been conducted for three different fuel Lewis numbers ranging from 0.6 to 1.4 (i.e. $Le_F = 0.6, 1.0$ and 1.4)

To analyse the effects of near-wall coherent flow structures and the flame orientation on the wall heat flux and flame quenching distance

Direct Numerical Simulation

- ✤ A well-known three-dimensional compressible DNS code SENGA+¹ is used.
- The code solves conservation equations for mass, momentum, energy and chemical species using finite difference method.
- The spatial derivatives are evaluated via a 10th order central difference scheme for internal points and gradually decreasing to 2nd order at the non-periodic boundaries.
- ✤ A Runge-Kutta (3rd order explicit) scheme for time advancement.
- Single step chemistry representing the stoichiometric fuel-air mixture is considered for the computational economy.
- ✤ The wall temperature is set to that of the non-reacting air-fuel mixture.

¹K. Jenkins, R.S. Cant Recent Advances in DNS and LES: Proceedings of the 2nd AFOSR Conference (1999)

Wall heat flux and quenching distance

* The wall heat transfer and flame quenching in FWI are characterised in terms of normalised wall heat flux Φ_w and Pectlet number *Pe*

$$\Phi_w = |q_w| / [\rho_0 c_{p0} S_L (T_{ad} - T_0)]$$
 and $Pe = y / \delta_Z$

q_w	wall heat flux	δ_z	Zel'dovich flame thickness
$ ho_0$	unburned gas density	T_0	unburned gas temperature
c_{p0}	unburned gas specific heat	T _{ad}	adiabatic flame temperature
S_L	unstretched laminar burning velocity	y	wall normal distance

* The minimum value of the Peclet number provides the measure of the flame quenching distance δ_Q in the following manner

$$Pe_{min} = \delta_Q/\delta_Z \mid \boldsymbol{\theta}^* = \mathbf{0.75}$$

Non-dimensional temperature $\theta = (T - T_0)/(T_{ad} - T_0)$

Lewis Number and Flame Curvature

The Lewis number (Le) is a dimensionless number defined as the ratio of thermal diffusivity to mass diffusivity

$$Le = \alpha_t / D = \lambda / \rho C_p D$$

where α_t is the thermal diffusivity and *D* is the mass diffusivity and λ is the thermal conductivity

***** The flame curvature κ_m can be defined as

$$\kappa_m = 0.5 \frac{\partial N_i}{\partial x_i}$$

where $N_i = -(\partial c / \partial x_i) / |\nabla c|$ is the *i*th component of flame normal.

According to the convention used in this work, the **flame surface elements**, which are **convex (concave)** to the reactants, **have positive (negative)** curvature values.

- * V-flame is investigated in this work with friction velocity based Reynolds number $Re_{\tau} = 110$ in channel flow configuration with inert walls for three different fuel Lewis numbers .
- Domain size of $22.22h \times 2h \times 4h$ discretised on $4000 \times 360 \times 720$ (approx. 1.0 billion) grid points.
- ✤ The simulation is run for two flow through times after the initial transients have decayed.

* **Progress variable** is defined in terms of the fuel mass fraction, $c = (Y_{Fu} - Y_F)/(Y_{Fu} - Y_{Fb})$.

Cases	Fuel Composition
${}^{1}Le_{F} = 0.6$	25%H ₂ and $75%$ CH ₄
$^{1}Le_{F} = 1.0$	$100\% \mathrm{CH}_4$
${}^{1}Le_{F} = 1.4$	90%C ₂ H ₆ and $10%$ CH ₄

¹**F. Dinkelacker, B. Manickam, S.P.R. Muppala**, Modelling and simulation of lean premixed turbulent CH4/h2/air flames with an effective Lewis number approach, Combust. Flame, 158 (9), 2011, 1742-1749,

Instantaneous and Mean Scalar Field

Fields of Favre-averaged temperature $\tilde{\theta}$ along with mean reaction progress variable contour $\tilde{c} = 0.1, 0.5$ and 0.8.

Isosurfaces of c = 0.5 with distributions of normalised vorticity magnitude $\Omega = \sqrt{w_i w_i} \times h/u_{\tau,NR}$ in the central mid-plane

Flame wall interaction

for bottom branches of turbulent V-flames

Normalised volume-integrated burning rate

$\Lambda =$	$ \dot{\omega}_F dV / [\rho_0 S_L h^2 (Y_{F0} - Y_{F\infty})]$
J	V

	$Le_F = 0.6$	$Le_{F} = 1.0$		$Le_{F} = 1.4$			
	$\Lambda = 1.55$	Λ = 1.33		$\Lambda = 1$	1.28		
Streamwise distance from the flame holder $(x - x_h)/h$ of the intersection point of $\tilde{c} = \begin{pmatrix} 20 \\ 15 \\ (\sqrt{x} + 10) \\ (\sqrt{x} + $							

 $\begin{array}{ccc} 0.6 & 1.0 & 1.4 \\ & Le_F \end{array}$

Variations of turbulent flame surface area A_f

Variations of the minimum Peclet number Pe_{min} and the maximum magnitudes of wall heat flux $\Phi_{w,max}$

Lewis number effects

0 0.2 0.4 0.6 0.8 1.0 1.1

Non-dim. temperature field $Le_F = 0.6$

 $Le = \frac{\alpha_T}{D}$

Isosurfaces of c = 0.75 coloured by local values of θ and $\kappa_m \times \delta_{th}$ for bottom branches of OWQ of turbulent V-flames

Instantaneous and mean distributions of normalised wall heat flux magnitude Φ_w

Joint PDF distribution of Wall shear stress and wall heat flux Mewcastle

Variations of the normalised mean wall shear stress with the streamwise

Joint PDF contours between Φ_w and $|\tau_w|/
ho_0 u_{\tau,NR}^2$

Probabilities of coherent structure

Effect of coherent structure on Φ_w

Flame Orientation

PDFs of $cos\beta = \vec{N} \cdot \vec{n}_w$ at the normalised smallest wall normal distance $Pe = y/\delta_z$ of the $\theta^* = 0.75$ isosurface

Effect of flame orientation on Φ_w

Mean values of Φ_w conditioned on the values of $\cos\beta$ at the normalised smallest wall normal distance $Pe = y/\delta_z$ of the $\theta^* = 0.75$ isosurface

$\cos\beta = -1$	Head on quenching
$\cos\beta = 0$	Pure side wall
	quenching
$\cos\beta = 1$	Entrained Flame

Newcastle

Jniversity

Summary

- * The effects of fuel Lewis number Le_F on the statistical behaviour of wall heat flux and flame quenching distance have been analysed for OWI of turbulent V-shaped flame with Le_F ranging from 0.6 to 1.4.
- * Maximum wall heat flux magnitude increases with decreasing Le_F whereas the flame quenching distance decreases with decreasing Le_F in turbulent OWI case but just the opposite trend was observed for laminar OWI and HOI cases.
- * Greater extent of flame wrinkling for smaller values of Le_F alters the proportions of flame surface area as well as local head-on and entrained flame quenching events.
- The effects of fuel Lewis number on flame orientation within turbulent boundary layers affect both wall heat transfer rate and flame quenching distance.
- Therefore, the thermo-diffusive effects arising from the non-unity Lewis number need to be accounted for accurate modelling of wall heat transfer during FWI in turbulent boundary layers.

Acknowledgements

The authors acknowledge computational support from:

- ARCHER2 (Project EP/V003534/1, EP/R029369/1)
- HPC facility at Newcastle University (Rocket).

SKG, UA and NC are grateful to EPSRC (Project EP/V003534/1) for the financial support.

Research Council

0 archer2

Non-reacting flow simulation

- $Re_{\tau} = 110$ for the non-reacting channel.
- $y^+ = 0.6$ at the wall and at least two grid

points are in $y^+ \leq 1.0$ region.

- Domain size $22.2h \times 2h \times 4h$.
- 4000 × 360 × 720 (approx. 1.0 billion) grid points.
- Data validated against existing DNS.

DNS data of Abe et al is available at http://www.rs.tus.ac.jp/~t2lab/db/index.html

Probabilities of coherent structure

Flame Orientation

PDFs of $cos\beta = \vec{N} \cdot \vec{n}_w$ in the region given by distance $Pe \ge y/\delta_z \ge 0$ where Pe is normalised wall normal distance $Pe = y/\delta_z$ of the $\theta^* = 0.75$ isosurface

